
GBBopen Tutorial

Version 1.5

Dan Corkill

The GBBopen Project
http://GBBopen.org

January 14, 2013
16:15 EST

This tutorial is under construction;
additional exercises will be added.

http://GBBopen.org


Copyright c© 2005–2013 by Daniel D. Corkill for the GBBopen Project.

This tutorial may be reproduced and distributed in whole or in part, subject to the following
conditions:

• The copyright notice above and this permission notice must be preserved complete on all
complete or partial copies.

• Any translation or derivative work of this tutorial must be approved by the copyright holder in
writing before distribution.

• If you distribute this tutorial in part, instructions and a means for obtaining a complete version
of this tutorial must be included.

• Small portions may be reproduced as illustrations for reviews or quotes in other works without
this permission notice if proper citation is given.

• Distribution of this work or a derivative of this work in any standard (hard copy) book form is
prohibited without prior written permission from the copyright holder.

All source code examples in this work are placed under and covered by the GBBopen software license
that accompanies each GBBopen distribution and is also available at
http://GBBopen.org/svn/GBBopen/trunk/LICENSE.

This work is licensed and provided “as is” without warranty of any kind, express or implied,
including, but not limited to, the implied warranties of merchantability and fitness for a particular
purpose or a warranty of non-infringement. GBBopen software and the information in this tutorial
are subject to change without notice.

Please help improve this tutorial by reporting any errors, inaccuracies, bugs, misleading or confusing
statements, missing or unhelpful index entries, and typographical errors that you find. E-mail bug
reports, comments, and suggestions to bugs@GBBopen.org. Your help is greatly appreciated and will
be acknowledged.

GBBopen is a trademark of the GBBopen Project.
Any other brand or product names are trademarks or registered trademarks of their respective
holders.

The GBBopen Project
181 Pondview Drive
Amherst, Massachusetts 01002

GBBopen@GBBopen.org
http://GBBopen.org

This tutorial was produced using LATEX and PDFLATEX.

ii

http://GBBopen.org/svn/GBBopen/trunk/LICENSE
mailto:bugs@GBBopen.org
mailto:GBBopen@GBBopen.org
http://GBBopen.org
http://www.latex-project.org


Contents
Acknowledgments iv

Introduction 1

1 Starting GBBopen 3

2 Creating a Unit Instance 15

3 Creating a Space Instance 19

4 Deleting Instances 25

5 Enhancing Your Development Environment 33

6 Working Within a File 37

7 Adding Dimensions 39

8 Using a Control Shell 47

9 Application Startup and Event Functions 55

10 Add Another KS 61

11 Making Connections 71

12 Creating a GBBopen Application 81

13 Multiple Walkers 97

14 A Dimensional Detour 99

15 More to come. . . 101

16 The Completed Application 103

Index 105

iii



Acknowledgments

Many people have contributed comments, suggestions, design ideas, questions (and answers), bug
reports, and code to GBBopen, and we appreciate their time and effort. Acknowledgment of some of
their contributions here does not necessarily imply that any individual or the organizations with
which they are affiliated endorse GBBopen or this documentation. Disclaimers aside, GBBopen users
thank each of you!

Douglas Crosher ported GBBopen to Scieneer CL. Gary King worked on the initial Digitool MCL and
OpenMCL porting efforts. Christian Lynbech performed the initial CMUCL port. Sam Steingold
initiated the CLISP port. Vladimir Tzankov provided Portable Threads support for CLISP/MT.

Questioners, bug reporters, capability demanders, contributors, and great idea suggesters include:
Pascal Costanza, Matthew Danish, Michael Hannemann, Susan Lander, Attila Lendvai, Wendall
Marvel, Clayton Morrison, Beryl Nelson, Eric O’Connor, Zack Rubinstein, Bill St. Clair, Earl Wagner,
Paul Werkowski, and Huzaifa Zafar.

Organizations Franz Inc. and LispWorks Ltd. provided (and continue to provide) Common Lisp
licenses and technical support to the Project.

Some early design work for GBBopen was supported by DARPA’s Information Exploitation Office
(IXO) under contract MDA-972-02-C-0028 to Information Extraction & Transport, Inc.

Other efforts using GBBopen that have indirectly led to contributed GBBopen improvements and
enhancements include: research supported by the “Fusion Based Knowledge for the Future Force”
ATO program and the “Advanced REsearch Solutions - Fused Intelligence with Speed and Trust”
program at the U.S. Army RDECOM CERDEC Intelligence and Information Warfare Directorate,
Fort Monmouth, NJ, under contract W15P7T-05-C-P621; research on “Command & Control and Data
Fusion Architectures” supported by DND Canada under contract W7701-4-2118; work on
“Knowledgable Dynamic-Process Modeling and Execution” supported by Boeing and Infosys
Technologies Limited; research on “A Multi-Agent Approach for Heterogeneous Persistent
Surveillance” supported by Raytheon Intelligence & Information Systems; work on “Massive-Scale
Representation and Reasoning” supported by GHX; and research supported by the AFRL “Advanced
Computing Architecture” program, under contract FA8750-05-1-0039.

Legacy Contributors GBBopen builds upon concepts and ideas that were explored and refined in
the UMass Generic Blackboard system and the commercial GBB product. The following people made
significant contributions to those systems:

UMass Generic GBB Product
Blackboard System Tony Carrico
Dan Corkill Dan Corkill
Kevin Gallagher Raymond de Lacaze
Philip Johnson Kevin Gallagher
Kelly Murray Susan Lander

Zack Rubinstein
Suzanne Tromara

The UMass Generic Blackboard Project received research support from The National Science
Foundation, the Defense Advanced Research Projects Agency, the Office of Naval Research, and Texas
Instruments, Inc.

The random-walk example used in this tutorial is adapted from Getting Started with GBB, written by
Dan Corkill and Suzanne Tromara.

iv

http://www.scieneer.com/scl/
http://www.metabang.com/
http://www.digitool.com/
http://openmcl.clozure.com/
http://www.podval.org/~sds/
http://clisp.cons.org/
http://clisp.cons.org/
http://p-cos.net/
http://www.cs.arizona.edu/~clayton/
http://www.cs.cmu.edu/~zbr/
http://www.cs.umass.edu/~hzafar/
http://www.franz.com
http://www.lispworks.com
http://dtsn.darpa.mil/ixo/
http://www.iet.com/


Introduction

GBBopen is a high-performance, open source blackboard-system framework. This tutorial shows you
how to get started using GBBopen through a series of exercises that cover GBBopen’s concepts and
features in a step-by-step sequence. The exercises guide you in creating a simple “random walk”
application that simulates taking a sequence of straight-line excursions, each of random length and
direction. Although the application is simple, it involves many of GBBopen’s features, from very basic
to fairly advanced.

GBBopen and Common Lisp

GBBopen is an extension of Common Lisp and uses CLOS (the Common Lisp Object System) and the
Metaobject Protocol (MOP) to provide blackboard-specific object capabilities. The blending of
GBBopen with Common Lisp transfers all the advantages of a rich, dynamic, reflective, and
extensible programming language to blackboard-application developers. Thus, GBBopen’s
“programming language” includes all of Common Lisp in addition to the blackboard-system
extensions documented in the GBBopen Reference manual.

This tutorial does not attempt to teach Common Lisp programming, and an understanding of basic
Common Lisp and CLOS concepts is assumed. Although it is possible to read through the tutorial
exercises without Common Lisp expertise, a much deeper understanding of GBBopen’s potential is
gained by understanding how GBBopen and Common Lisp work smoothly together. Two frequently
recommended Common Lisp books are Peter Seibel’s Practical Common Lisp and Paul Graham’s On
Lisp. Both books are available on line, as well in traditional book form. A less programmer-oriented
introduction to Common Lisp is David Touretzky’s Common Lisp: A Gentle Introduction to Symbolic
Computation, also available on line.

Ken Pitman’s Common Lisp HyperSpec, an easily navigable HTML document derived from the ANSI
Common Lisp standard, is the customary programmer’s reference for Common Lisp. A down-loadable
archive of the HyperSpec is also available, which is very convenient when working without a
continuous connection to the Internet. We will show how to make the HyperSpec and the GBBopen
Reference HyperDoc directly accessible in your Common Lisp development environment in Exercise 5.

Using a Common Lisp/GBBopen development environment

The tutorial exercises build on one another, and they are intended to be performed sequentially. The
initial exercise involves installing GBBopen and preparing it for use in your environment. This is
followed by several exercises where you interact with GBBopen by entering forms into the “Lisp
Listener” (also called the read-eval-print-loop or simply the REPL) that is provided by your Common
Lisp implementation. As the scope of the random-walk application grows, however, it is important to
set up a working environment where your work is done in a file. So, after these initial GBBopen
exercises, we will spend an exercise setting up your environment to provide you power-user
productivity for the remainder of the tutorial (and for future GBBopen activities). This diversion
exercise will be worth your time!

GBBopen 1.5 Tutorial
1

http://www.lispworks.com/documentation/HyperSpec/Front/index.htm
http://www.alu.org/mop/index.html
http://www.gigamonkeys.com/book/
http://paulgraham.com/onlisptext.html
http://paulgraham.com/onlisptext.html
http://www.cs.cmu.edu/~dst/LispBook/
http://www.cs.cmu.edu/~dst/LispBook/
http://www.lispworks.com/documentation/HyperSpec/
ftp://ftp.lispworks.com/pub/software_tools/reference/HyperSpec-7-0.tar.gz
ftp://ftp.lispworks.com/pub/software_tools/reference/HyperSpec-7-0.tar.gz


2



1 Starting GBBopen

This initial exercise requires that you:

• Obtain and install Common Lisp

• Obtain and install GBBopen

• Join the GBBopen Forum

• Interact with Common Lisp’s read-eval-print loop (REPL)

• Recover from errors

• Prepare to use GBBopen in the next exercises by loading the :gbbopen-user module

Step 1: Obtain and install Common Lisp

GBBopen requires a supported Common Lisp implementation. If one has already been installed on
your system, then this step is finished. (That was easy!) If not, then you will need to choose, obtain,
and install a Common Lisp implementation before moving on to the next step.

The list of Common Lisp implementations, with version numbers, on which GBBopen is supported is
maintained on the “Current ports” page of the GBBopen Project web site. The list includes
commercial products and open-source implementations made available under varying license
arrangements. The vendors of commercial Common Lisp products offer no-cost “Trial” or “Personal”
editions that can support the tutorial exercises and allow you to become familiar with their products
before making a purchase decision.

Choosing a particular implementation is a subjective decision. Some Common Lisp implementations
run on only a single platform. Some implementations do not provide multiprocessing (thread) support
on some or all of the platforms that they run on. Some implementations come with their own
integrated development environment (IDE), interactive graphics facilities, and supported libraries
and extensions. When it comes to selecting an implementation, there is no “best” answer (but there is
also no wrong answer, if the implementation meets your current needs). All these Common Lisp
implementations strive to conform to the ANSI (American National Standards Institute) standard for
the Common Lisp language. By writing GBBopen applications to remain consistent with the ANSI
standard (including portable extensions to the standard that are provided by GBBopen), we can easily
run our code on any Common Lisp implementation that provides similar capabilities (such as threads,
for example).

However you choose to obtain Common Lisp, you must have an installed and operating
implementation for your system before proceeding to the next step.

Step 2: Obtain and install GBBopen

Unless someone has already installed GBBopen on your machine, you will need to obtain and install
it. GBBopen is available in source form from http://GBBopen.org/. In this step I discuss three
different approaches for downloading GBBopen, and you can follow whichever approach is most
familiar for you. (In the absence of any preference, I recommend the Subversion client approach.)

GBBopen 1.5 Tutorial
1 Starting GBBopen 3

http://GBBopen.org/ports.html
http://GBBopen.org/
http://GBBopen.org/


Downloading the snapshot archive

A snapshot archive of the GBBopen source-code repository can be downloaded from
http://gbbopen.org/downloads/GBBopen.tar.gz. Extract the archive into a directory of your
choosing, and follow the “Compiling All GBBopen Modules” instructions that are contained in the
README file of the installation.

Downloading with Subversion

Alternatively, if you are familiar with Subversion and have a Subversion client installed on your
computer, you can checkout the latest files directly from the GBBopen repository. For example, the
shell command:

[~]$ svn checkout http://GBBopen.org/svn/GBBopen/trunk/ gbbopen

will create a GBBopen repository tree rooted at the directory named gbbopen in your current
working directory. As above, follow the “Compiling All GBBopen Modules” instructions that are
contained in the README file of the installation.

GBBopen development is ongoing, and you should update your GBBopen installation regularly in
order to obtain the latest capabilities and enhancements. Subversion provides an easy way to keep
current, and you are strongly encouraged to install a Subversion client and use it perform frequent
updates. Simply issue the command:

[~/gbbopen]$ svn update

from the root directory of your GBBopen repository tree. The TortoiseSVN Subversion client is highly
recommended for Windows users. TortoiseSVN is smoothly integrated with the Windows Shell
(Explorer) and is as easy to use as TortoiseCVS (also highly recommended if aren’t already using it as
your CVS client on Windows).

Subversion .svn administrative directories are included in the GBBopen snapshot archive, so a
Subversion update command can be used to freshen a GBBopen installation that was originally
installed using the snapshot archive download-and-extraction approach described previously.

Downloading with clbuild

If you use clbuild, you can use it to download the latest GBBopen sources by issuing the following
command:

[~]$ clbuild install gbbopen

At any later time, you can issue the command:

[~]$ clbuild update gbbopen

to obtain the latest sources from the GBBopen repository.

If your clbuild doesn’t know about GBBopen, add the following line to the clbuild wnpp-projects file:

gbbopen get_svn http://gbbopen.org/svn/GBBopen/trunk/ #blackboard-system
framework, tools, & utilities

As was the case with the other two download methods, follow the “Compiling All GBBopen Modules”
instructions that are contained in the GBBopen README file to complete the installation.

4
GBBopen 1.5 Tutorial
1 Starting GBBopen

http://gbbopen.org/downloads/GBBopen.tar.gz
http://subversion.tigris.org
http://tortoisesvn.tigris.org/
http://www.tortoisecvs.org/
http://common-lisp.net/project/clbuild/


Downloading with Quicklisp

If you use Quicklisp, you can use it to download and install GBBopen by evaluating the following
form once Quicklisp is set up:

> (ql:quickload "gbbopen")
;; GBBopen is installed in <install-dir>
;; Your "home" directory is <homedir>
;; Predefining :SWANK-BACKEND package for SLIME...
;; No shared module command definitions were found in

<install-dir>/gbbopen-modules/.
;; No personal module command definitions were found in

<homedir>/gbbopen-modules/.
;; GBBopen is installed in <install-dir>
;; Your "home" directory is <homedir>
;; Loading <install-dir>/extended-repl.lisp
;; Loading <install-dir>/commands.lisp
;; Loading <install-dir>/gbbopen-modules-directory.lisp
;; No shared module command definitions were found in

<install-dir>/gbbopen-modules/.
;; No personal module command definitions were found in

<homedir>/gbbopen-modules/.
;; Defining an ASDF defsystem for each Module Manager module...
To load "gbbopen":

Load 1 ASDF system:
gbbopen

; Loading "gbbopen"

("gbbopen")
>

As was the case with the other download methods, follow the “Compiling All GBBopen Modules”
instructions that are contained in the GBBopen README file to complete the installation.

Step 3: Join the GBBopen Forum

If you need help or advice, the GBBopen Forum is the place to ask (should this tutorial and a search
of the Forum boards come up short). The posts and advice available there will save you time and
frustration and get you writing quality GBBopen applications easier and sooner. Why not register
right now?

Step 4: Interact with the REPL

This tutorial assumes that you have a basic understanding of Common Lisp and, in particular, how to
interact with the Common Lisp implementation that you are using. Thus, you should be able to start
up your Common Lisp system and enter forms into the “Lisp Listener” (also called the read-eval-print
loop or simply the REPL) that it provides.

When you start your Common Lisp system, it may first display some informational messages and
then you should see a prompt for input that looks something like:

>

GBBopen 1.5 Tutorial
1 Starting GBBopen 5

http://www.quicklisp.org/beta/
http://forum.GBBopen.org/


The specific format of the prompt differs depending on your Common Lisp implementation. The
prompt character may vary, such as *, :, or ?. The prompt might include a entry number that is
incremented each time an expression is entered, such as:

[1]>

or it might also include the name of the current package (symbol namespace) being used by the REPL:

cl-user(1)>

For the remainder of this tutorial, we will include the package name in our example prompts to make
it clear what package should be current:

cl-user>

The REPL prompt indicates that it is awaiting a Common Lisp expression to evaluate and then
display the evaluation results. For example, enter the expression:

cl-user> (+ 1 2)
3
cl-user>

Note that what you need to enter is shown in black and other items, such as the REPL prompt and
displayed result, 3, are shown in gray. We will follow this convention throughout the tutorial to help
make it clear what you must provide in the context of other information.

You may find it easier and faster to cut and paste text from this tutorial (if you are working with it
on-line) rather than typing what is requested. On the other hand, some feel that they learn faster
(and improve retention) through the action of typing. Either text-entry approach, however, is
preferable to simply reading through the exercises. This tutorial is about learning by doing!

While we are on the subject of what is displayed, enter the following expression:

cl-user> ’symbol
symbol
cl-user>

The displayed result that you see might be in lower case, as shown, or upper case, or even capitalized.
In this tutorial, results are shown with Common Lisp symbols displayed in lower case, which I prefer
as being slightly easier to read. If you wish, you can duplicate this behavior in your REPL by entering
the following form:

cl-user> (setf *print-case* ’:downcase)
:downcase
cl-user>

Your Common Lisp implementation may also differ slightly on how it displays multiple returned
values. For example:

cl-user> (values 1 2 3)
1
2
3
cl-user>

In this tutorial, we show multiple returned values as displayed on separate lines. Your Common Lisp
implementation may show them differently, such as with semicolon value-separator characters:

6
GBBopen 1.5 Tutorial
1 Starting GBBopen



cl-user> (values 1 2 3)
1 ;
2 ;
3
cl-user>

Step 5: Recover from an error

Even you are a very careful typist, sooner or later you will enter a Common Lisp expression that
signals an error. Therefore, it is important that you know how to get back on track when the
inevitable occurs. Let’s intentionally generate an error. Enter:

cl-user> (/ 1 0)
Error: Attempt to divide 1 by zero.
cl-user>>

The behavior of your Common Lisp environment should look similar, and you should now be in your
implementation’s debugger or “break loop.” The debugger prompt may differ from the standard REPL
prompt to help remind you that you are in the break loop. Alternatively, your implementation may
open another window or buffer in response to the error. Your implementation may allow you to
continue entering Common Lisp expressions at the break prompt that are evaluated and the results
displayed just as if you were in the normal REPL (opening the possibility of causing another error
and triggering another instance of the debugger). You can use the debugger to inspect the nesting, or
“backtrace,” of function calls that led to the error, view and edit local variable bindings, and so forth,
and you can often correct the cause of the error and resume the broken evaluation directly from the
debugger.

For this tutorial, you only need to know how to abort out of the evaluation and return back to the
REPL if you trigger an error. The details for aborting the computation and exiting the debugger are
implementation dependent, so you may need to investigate how to abort out of an error on your
Common Lisp implementation. For example, it might be as easy as entering an abort debugger
command:

cl-user> (/ 1 0)
Error: Attempt to divide 1 by zero.
cl-user>> :a
cl-user>

Consult your Common Lisp documentation or a knowledgeable friend if you need assistance with the
debugger in your Common Lisp implementation (:a or q are typical abort commands).

Breaking a computation

There are other mistakes that don’t signal an error. Suppose I foolishly evaluate this expression:
cl-user> (loop (print "This is repetitive...") (sleep 1))

"This is repetitive..."
"This is repetitive..."

. . .

Once I grow tired of watching this phrase repeat, it would be good to terminate the evaluation
without having to kill the entire Common Lisp program.

GBBopen 1.5 Tutorial
1 Starting GBBopen 7



Again, the specifics depend on your Common Lisp environment, but all that is needed is to interrupt,
or “break,” the computation. Often this is associated with typing one or more Control-c (^c)
characters:

cl-user> (loop (print "This is repetitive...") (sleep 1))

"This is repetitive..."
"This is repetitive..."

. . .
"This is repetitive..."
"This is repetitive..."
"This is rep^C
Error: Received keyboard interrupt ^C
cl-user>>

Typically a keyboard interrupt invokes the debugger where the computation can be resumed or
aborted:

cl-user> (loop (print "This is repetitive...") (sleep 1))

"This is repetitive..."
"This is repetitive..."

. . .
"This is repetitive..."
"This is repetitive..."
"This is rep^C
Error: Received keyboard interrupt ^C
cl-user>> :a
cl-user>

Help! My REPL is broken!

Here is one last difficulty. Suppose I enter:
cl-user> (list "This" "is "also" "a" "problem!")
cl-user>
cl-user>
cl-user>

My REPL seems dead: no result is displayed and I continue to be prompted again and again for input.
I suppose I should try the entering the expression again:

cl-user> (list "This" "is "also" "a" "problem!")
cl-user>
cl-user>
cl-user>
cl-user> (list "This" "is" "also" "a" "problem!")
cl-user>
cl-user>

Nope, my REPL is still broken.

Of course the cause of the problem is that I forgot the closing double-quote character on "is" when I
entered the first expression. The REPL is still patiently waiting for me to finish that first Common
Lisp expression. (I didn’t break it after all!)

8
GBBopen 1.5 Tutorial
1 Starting GBBopen



So how do I get out of this? I could try entering a sequence of double-quote and close parentheses and
hope I that I get lucky:

cl-user> (list "This" "is "also" "a" "problem!")
cl-user>
cl-user>
cl-user>
cl-user> (list "This" "is" "also" "a" "problem!")
cl-user>
cl-user>
cl-user> "
cl-user> )
Error: Attempt to take the value of the unbound variable ‘also’.
cl-user>>

or I could interrupt the REPL read operation, just as I did with the infinite loop situation above, and
abort back from the debugger to the REPL and try again:

cl-user> (list "This" "is "also" "a" "problem!")
cl-user>
cl-user>
cl-user>
cl-user> (list "This" "is" "also" "a" "problem!")
cl-user>
cl-user>
cl-user> ^C
Error: Received keyboard interrupt ^C
cl-user>> :a
cl-user> (list "This" "is" "also" "a" "problem!")
("This" "is" "also" "a" "problem!")
cl-user>

You may discover even more creative ways to get into problems, but these example situations should
give you enough experience to get through the rest of the tutorial.

Step 6: Load the :gbbopen-user module

GBBopen is packaged with its own module system that supports compiling and loading GBBopen
components.

To compile and load the :gbbopen-user module and all the GBBopen modules it requires, you need
to evaluate the following forms within your Common Lisp environment. Unless you are using
GBBopen with ASDF, clbuild, or Quicklisp (see below), load GBBopen’s
<install-dir>/initiate.lisp file from wherever GBBopen was installed:
cl-user> (load "<install-dir>/initiate.lisp")
;; Loading <install-dir>/initiate.lisp
;; GBBopen is installed in <install-dir>
;; Your "home" directory is <homedir>
;; Loading <install-dir>/extended-repl.lisp
;; Loading <install-dir>/commands.lisp
;; Loading <install-dir>/gbbopen-modules-directory.lisp
;; No shared module command definitions were found in <install-dir>/gbbopen-modules/.
;; No personal module command definitions were found in <homedir>/gbbopen-modules/.
#P"<install-dir>/initiate.lisp"

GBBopen 1.5 Tutorial
1 Starting GBBopen 9



cl-user> :gbbopen-user

;; Loading <install-dir>/startup.lisp

;; GBBopen is installed in <install-dir>

;; Your "home" directory is <homedir>

;; Loading <install-dir>/source/module-manager/module-manager-loader.lisp

;; Loading <install-dir>/<platform-dir>/module-manager/module-manager.lisp

. . .

;; Loading <install-dir>/modules.lisp

;; No shared module definitions were found in <install-dir>/gbbopen-modules/.

;; No personal module definitions were found in <homedir>/gbbopen-modules/.

. . .

;; Compiling <install-dir>/source/gbbopen/gbbopen-user.lisp

;; Loading <install-dir>/<platform-dir>/gbbopen/gbbopen-user.fasl

t

gbbopen-user>

GBBopen should compile (if necessary) and load all the files needed for the next exercise without
error. The output on your Common Lisp implementation may vary somewhat from that shown above.
For example, the file extension for compiled files, shown as .fasl throughout this tutorial, is
dependent on your Common Lisp implementation and platform.

10
GBBopen 1.5 Tutorial
1 Starting GBBopen



ASDF, clbuild, and Quicklisp users

GBBopen’s Module Manager Facility provides an interface that allows ASDF (and therefore
clbuild and Quicklisp) to play nice with Module Manager. If you installed GBBopen using
clbuild or Quicklisp, ASDF has been informed of GBBopen’s
<install-dir>/gbbopen.asd system-definition file. Otherwise, to use ASDF to set up
GBBopen, you must add the gbbopen.asd file to ASDF’s Registry manually. Then, instead
of loading the <install-dir>/initiate.lisp file, the Module Manager and GBBopen
module definitions can be loaded using ASDF by entering:
cl-user> (asdf:operate ’asdf:load-op ’gbbbopen)
;; Loading <install-dir>/initiate.lisp
;; GBBopen is installed in <install-dir>
;; Your "home" directory is <homedir>

. . .
;; Loading <install-dir>/startup.lisp
;; GBBopen is installed in <install-dir>
;; Your "home" directory is <homedir>
;; Loading <install-dir>/source/module-manager/module-manager-loader.lisp
;; Loading <install-dir>/<platform-dir>/module-manager/module-manager.lisp

. . .
;; Loading <install-dir>/modules.lisp
;; No shared module definitions were found in

<install-dir>/gbbopen-modules/.
;; No personal module definitions were found in <homedir>/gbbopen-modules/.

. . .
;; Defining an ASDF defsystem for each Module Manager module...
cl-user>

or when ASDF is integrated with Common Lisp’s require:
cl-user> (require :gbbopen)
;; Loading <install-dir>/initiate.lisp
;; GBBopen is installed in <install-dir>
;; Your "home" directory is <homedir>

. . .
;; Loading <install-dir>/startup.lisp
;; GBBopen is installed in <install-dir>
;; Your "home" directory is <homedir>
;; Loading <install-dir>/source/module-manager/module-manager-loader.lisp
;; Loading <install-dir>/<platform-dir>/module-manager/module-manager.lisp

. . .
;; Loading <install-dir>/modules.lisp
;; No shared module definitions were found in

<install-dir>/gbbopen-modules/.
;; No personal module definitions were found in <homedir>/gbbopen-modules/.

. . .
;; Defining an ASDF defsystem for each Module Manager module...
cl-user>

Notice that loading the <install-dir>/initiate.lisp file loaded only GBBopen’s
REPL command processing extensions, global REPL command definitions, and
module-directory processing into Common Lisp–the Module Manager is not loaded until it
is needed (such as when we performed the :gbbopen-user REPL command). The ASDF
:gbbopen “system” start up, on the other hand, must also load the Module Manager and
module definitions, as they are required in order to define an ASDF system for each Module
Manager module.

GBBopen 1.5 Tutorial
1 Starting GBBopen 11

http://common-lisp.net/project/asdf/
http://common-lisp.net/project/clbuild/
http://quicklisp.org/beta/


Packages

Note that when the :gbbopen-user module was loaded, the Module Manager changed the current
package to the :gbbopen-user package. In the Common Lisp implementation above, this is shown
by the new package name in the REPL prompt. The current package can also be seen by evaluating:

cl-user> *package*
#<package GBBOPEN-USER>
gbbopen-user>

In Common Lisp, a package is a namespace that maps names to symbols. One package is always
designated as the “current” package, and it is this package that is used by default for creating and
finding symbols by their names. Initially, the current package is set to the :common-lisp-user
package. The :gbbopen-user module creates a new package, named :gbbopen-user, that includes
GBBopen Tools and GBBopen Core symbols in addition to the standard Common Lisp symbols. If the
current package is not set to the :gbbopen-user package in the exercises to follow, references to
GBBopen functions and variables will not map to the proper symbols.

If it didn’t work. . .

If you are running GBBopen in a Common Lisp environment that doesn’t support REPL commands
and the :gbbopen-user REPL command didn’t work, all is not lost. Loading
<install-dir>/initiate.lisp also defines functions in the :common-lisp-user package with
the same name as the REPL command:

cl-user> (load "<install-dir>/initiate.lisp")
;; Loading <install-dir>/initiate.lisp
;; GBBopen is installed in <install-dir>
;; Your "home" directory is <homedir>
;; Loading <install-dir>/extended-repl.lisp
;; Loading <install-dir>/commands.lisp
;; Loading <install-dir>/gbbopen-modules-directory.lisp
;; No shared module command definitions were found in

<install-dir>/gbbopen-modules/.
;; No personal module command definitions were found in

<homedir>/gbbopen-modules/.
#P"<install-dir>/initiate.lisp"
cl-user> (gbbopen-user)
;; Loading <install-dir>/startup.lisp

. . .
;; Loading <install-dir>/<platform-dir>/gbbopen/gbbopen-user.fasl
gbbopen-user>

File protection problems?

If one or more GBBopen files needs to be compiled, you must have write permission for those files and
directories on your file system. If you do not have write permission and someone else is maintaining
your GBBopen installation, you must remind them that they should perform the “Compiling All
GBBopen Modules” operations (described in the GBBopen installation README file) every time they
update GBBopen to ensure that all the latest GBBopen files have been compiled.

12
GBBopen 1.5 Tutorial
1 Starting GBBopen



REPL command syntax

GBBopen’s REPL commands are defined to mimic the syntax of existing REPL commands in your
Common Lisp environment. REPL commands, including those that have arguments, are normally
specified using a non-list (“spread”) representation. For example:

cl-user> :gbbopen-user :create-dirs
;; Loading <install-dir>/startup.lisp

. . .
;; Loading <install-dir>/<platform-dir>/gbbopen/gbbopen-user.fasl
gbbopen-user>

Some Common Lisp implementations (Clozure CL, LispWorks, and SBCL) and the SLIME REPL
interface, also support REPL commands in non-spread (list) form in addition to the spread notation.
For example:

cl-user> (:gbbopen-user :create-dirs)
;; Loading <install-dir>/startup.lisp

. . .
;; Loading <install-dir>/<platform-dir>/gbbopen/gbbopen-user.fasl
gbbopen-user>

As noted above, equivalent functions in the :common-lisp-user package are always defined for each
REPL command, and these functions can be used in place of the keyword REPL command processing:

cl-user> (cl-user:gbbopen-user :create-dirs)
;; Loading <install-dir>/startup.lisp

. . .
;; Loading <install-dir>/<platform-dir>/gbbopen/gbbopen-user.fasl
gbbopen-user>

We will show the spread command syntax (see page 13) throughout the rest of the Tutorial.
(GBBopen’s REPL commands are summarized in the GBBopen REPL Commands Quick Reference
Card, available on the GBBopen web site.)

Beyond <install-dir>/initiate.lisp

Although loading GBBopen’s <install-dir>/initiate.lisp file is a very easy way to get started
with GBBopen, setting up your computing environment for serious GBBopen development requires
only a few moments that will be recouped almost immediately. The steps needed to set everything up
will be detailed soon in the Enhancing Your Development Environment exercise (see page 33).

13

http://trac.clozure.com/ccl
http://www.lispworks.com
http://sbcl.sourceforge.net
http://common-lisp.net/project/slime/
http://GBBopen.org/downloads/command-refcard.pdf
http://GBBopen.org/downloads/command-refcard.pdf


14



2 Creating a Unit Instance

Blackboard objects in GBBopen are called unit instances. Each unit instance is a member of a unit
class. The unit class defines the structure of all instances of the unit class, such as the slots in each
unit instance. At a more precise Common Lisp level, every GBBopen unit instance is member of a
(possibly non-direct) subclass of GBBopen’s unit class, standard-unit-instance, which is itself a
subclass of Common Lisp’s standard-object class. Even more technically, the metaclass of each
GBBopen unit class is an instance of the GBBopen metaclass, standard-unit-class, which is a
subclass of Common Lisp’s standard-class metaclass. In other words, GBBopen classes and unit
instances fit naturally into the CLOS (the Common Lisp Object System) and MOP (Metaobject
Protocol) hierarchies. Fortunately, understanding such details is not required to put GBBopen to use.

The word “unit” is used in GBBopen because it has a very neutral meaning that is unlikely to be
confused with programming terminology, such as “object,” or with application-domain concepts, such
as “location” or “goal”. When someone refers to “unit instances,” it is clear that they are talking about
GBBopen’s blackboard objects. Thus, “unit instance” always refers to an instance of a particular unit
class, and “unit class” refers to a class of unit instances.

So let’s start using them. . .

This exercise shows you how to:

• Define a unit class
• Create a unit instance
• Display a description of a unit instance
• Find a unit instance by its name
• Read and write slot values

Prerequisites

If you ended the Common Lisp session used in the last exercise, begin a new session and evaluate the
following forms:

cl-user> (load "<install-dir>/initiate.lisp")
. . .

cl-user> :gbbopen-user
. . .

gbbopen-user>

ASDF, clbuild, and Quicklisp users

Remember to (asdf:operate ’asdf:load-op ’gbbbopen) or (require :gbbopen)
in place of loading <install-dir>/initiate.lisp.

Step 1: Define the location unit class

We begin by defining a unit class location that has two slots, named x and y.

GBBopen 1.5 Tutorial
2 Creating a Unit Instance 15

http://www.alu.org/mop/index.html
http://www.alu.org/mop/index.html


gbbopen-user> (define-unit-class location ()
(x y))

#<location>
gbbopen-user>

This unit-class definition instructs GBBopen to:

• Define initialization argument :x for the x slot and :y for the y slot. You will use these
initialization arguments in the next step, to specify initial slot values for an instance.

• Define reader and writer methods for the x-of and y-of generic slot-accessor functions, used to
reading and modifying the x and y slot values.

Step 2: Create a unit instance

Next, you can create a unit instance for the location unit class. To simplify access to the unit
instance during subsequent activities, first define a global variable called ui by entering the following
form:

gbbopen-user> (defvar ui)
ui
gbbopen-user>

Now, create a unit instance and assign it to the variable ui by entering the form:
gbbopen-user> (setf ui (make-instance ’location :x 40 :y 60))
#<location 1>
gbbopen-user>

This creates a unit instance of the location class, initializes the instance’s x and y slots with the
values specified by the :x and :y initialization arguments. The created unit instance is then assigned
to the variable ui.

Step 3: Display a description of the unit instance

Now, display a description of the unit instance by using GBBopen’s describe-instance function.
Enter the following form:

gbbopen-user> (describe-instance ui)
Location #<location 1>

Instance name: 1
Space instances: None
Dimensional values: None
Non-link slots:

x: 40
y: 60

Link slots: None
gbbopen-user>

Note that you didn’t specify a name for the unit instance when you created it. In fact, there is often no
natural reason to name each unit instance you create. By default, GBBopen names unit instances by
giving it a sequentially increasing number. (For example, the unit instance you just created is named
1.) GBBopen requires that each instance of a unit class is uniquely named within the class and the
accessor instance-name-of can be used to access this name:

16
GBBopen 1.5 Tutorial

2 Creating a Unit Instance



gbbopen-user> (instance-name-of ui)
1
gbbopen-user>

Step 4: Find a unit instance by its name

You can look up a particular unit instance by its name. For example, to find the location 1 unit
instance by name, enter the form:

gbbopen-user> (find-instance-by-name 1 ’location)
#<location 1>
gbbopen-user>

Of course, we assigned the location unit instance to the global variable ui, but it is nice to know
that we can always find our unit instance using its name.

Step 5: Change the x slot value

Use the x-of reader and writer methods GBBopen defined for the x slot (in Step 3 above) to get the
value of the x slot of the unit instance:

gbbopen-user> (x-of ui)
40
gbbopen-user>

change the slot value to 50:

gbbopen-user> (setf (x-of ui) 50)
50
gbbopen-user>

and then get the (new) value of the x slot:

gbbopen-user> (x-of ui)
50
gbbopen-user>

Display the description of the location unit instance again, observing the changed x slot value:

gbbopen-user> (describe-instance ui)
Location #<location 1>

Instance name: 1
Space instances: None
Dimensional values: None
Non-link slots:

x: 50
y: 60

Link slots: None
gbbopen-user>

17



18



3 Creating a Space Instance

In GBBopen, space instances serve as containers for unit instances. As we saw in the last exercise,
unit instances need not be placed in a space instance. They are perfectly useful on their own. In this
exercise we will create a space instance and add and remove unit instances from it. A unit instance
can also be contained in multiple space instances at the same time. Although containment “in” a
space instance is a more technically correct phrase, historically developers talk of unit instances
being “on” a space instance or of adding a unit instance “to” a space instance. Whichever preposition
is used, the meaning is the same.

As with unit instances, each space instance is a member of a space class. The space class defines the
structure of all instances of the space class, such as any slots associated with each space instance.
Unlike unit instances, however, the standard GBBopen space class, standard-space-instance, is
often sufficient for most applications. Therefore, space-instance subclasses rarely need to be defined.

Space instances can be organized into hierarchical structures, much like the directories in a
hierarchical file system. A useful, but not exact, analogy is to think of unit instances as being similar
to files and space instances as similar to directories. Stretching this analogy one step further, adding
a unit instance to a space instance is akin to creating a symbolic link to a file in a directory. Removing
the unit instance from the space instance is like removing the symbolic link: the unit instance itself,
like the file, is not deleted by the removal.

This exercise shows you how to:

• Create a space instance

• Find a space instance by its path

• Add and remove a unit instance from the space instance

• Display a description of the blackboard repository

• Find unit instances on a space instance

Prerequisites

If you ended the Common Lisp session used in the last exercise, begin a new session and evaluate the
following forms:

cl-user> (load "<install-dir>/initiate.lisp")

. . .
cl-user> :gbbopen-user

. . .
gbbopen-user> (define-unit-class location ()

(x y))

#<location>

gbbopen-user> (defparameter ui (make-instance ’location :x 40 :y 60))

ui

gbbopen-user>

GBBopen 1.5 Tutorial
3 Creating a Space Instance 19



ASDF, clbuild, and Quicklisp users

Remember to (asdf:operate ’asdf:load-op :gbbbopen) or (require :gbbopen)
in place of loading <install-dir>/initiate.lisp.

Step 1: Create a space instance

Create a space instance named known-world. To simplify access to the space instance during
subsequent activities, first define a global variable called si by entering the following form:
gbbopen-user> (defvar si)
si
gbbopen-user>

Now, create the space instance and assign it to the variable si by entering the form:
gbbopen-user> (setf si (make-space-instance ’(known-world)))
#<standard-space-instance (known-world)>
gbbopen-user>

The argument to the make-space-instance is the “path” to be used for the created space instance. A
space-instance path is the complete list of space-instance names, starting with the name of the most
distant indirect parent, that uniquely identifies a space instance in the blackboard repository. Our
known-world space instance does not have a parent, so its path is simply (known-world).

Step 2: Display a description of the blackboard repository

Display a description of the blackboard repository, which now contains the known-world space
instance:

gbbopen-user> (describe-blackboard-repository)

Space Instance Contents
-------------- --------
known-world Empty

Unit Class Instances
---------- ---------
location 1
standard-space-instance 1

---------
2 instances

gbbopen-user>

The description indicates that:

• One space instance, known-world, exists in the repository
• The known-world space instance is empty; there are no unit instances stored in it
• The location unit instance exists, but it does not reside on any space instance
• There is one standard-space-instance, our known-world space instance, which also does

not reside on any space instance

20
GBBopen 1.5 Tutorial

3 Creating a Space Instance



Step 3: Find a space instance by its path

You can look up a particular space instance by its space-instance path:
gbbopen-user> (find-space-instance-by-path ’(known-world))
#<standard-space-instance (known-world)>
gbbopen-user>

We assigned the known-world space instance to the global variable si, but it is nice to know that we
can always find it again using its path.

Step 4: Add the unit instance to the space instance

Now, add the location unit instance to the space instance. Enter the following form:
gbbopen-user> (add-instance-to-space-instance ui si)
#<location 1>
gbbopen-user>

Step 5: Again, display the blackboard-repository description

Display the description of the blackboard repository again:
gbbopen-user> (describe-blackboard-repository)

Space Instance Contents
-------------- --------
known-world 1 instance (1 location)

Unit Class Instances
---------- ---------
location 1
standard-space-instance 1

---------
2 instances

gbbopen-user>

This time the description indicates that the known-world space instance has one instance of the
location unit class stored on it.

Step 6: Display the description of the unit instance

Display the description of the location unit instance once again, observing the change in the space
instances from the last exercise:

gbbopen-user> (describe-instance ui)
Location #<location 1>

Instance name: 1
Space instances: ((known-world))
Dimensional values: None
Non-link slots:

x: 50

GBBopen 1.5 Tutorial
3 Creating a Space Instance 21



y: 60
Link slots: None

gbbopen-user>

Step 7: Find the unit instance on the space instance

Now that the location unit instance is on the known-world space instance, we can find it on the
space instance. The form is as follows, where :all is a very basic retrieval pattern specifying that all
unit instances on the known-world space instance are to be returned:

gbbopen-user> (find-instances ’location ’(known-world) :all)
(#<location 1>)
gbbopen-user>

The list of found unit instances is returned. (In this case, there is only one in the list.)

This is a very simple retrieval; however, GBBopen can perform extremely complex searches as well.
We will use more complex retrieval patterns in upcoming exercises.

Step 8: Add another unit instance to the space instance

Create a second instance of the location unit class, with x and y slot values 80 and 90, respectively,
and add it to the known-world space instance:

gbbopen-user> (add-instance-to-space-instance
(make-instance ’location :x 80 :y 90)
si)

#<location 2>
gbbopen-user>

This time we did not assign the new location unit instance to a global variable but, as before, we
can find the unit instance by its name:

gbbopen-user> (find-instance-by-name 2 ’location)
#<location 2>
gbbopen-user>

As you would expect, we can retrieve both location unit instances from the known-world space
instance using find-instances:

gbbopen-user> (find-instances ’location ’(known-world) :all)
(#<location 2> #<location 1>)
gbbopen-user>

Step 9: Again, display the blackboard-repository description

Display the description of the blackboard repository again:

gbbopen-user> (describe-blackboard-repository)

Space Instance Contents
-------------- --------
known-world 2 instances (2 location)

22
GBBopen 1.5 Tutorial

3 Creating a Space Instance



Unit Class Instances
---------- ---------
location 2
standard-space-instance 1

---------
3 instances

gbbopen-user>

This time the description indicates that the known-world space instance has both instances of the
location unit class stored on it.

Step 10: Remove a unit instance from the space instance

Now, remove the first location unit instance from the known-world space instance. Enter the
following form:

gbbopen-user> (remove-instance-from-space-instance ui si)
#<location 1>
gbbopen-user>

As you would expect, only the second location unit instance remains on the known-world space
instance:

gbbopen-user> (find-instances ’location ’(known-world) :all)
(#<location 2>)
gbbopen-user>

and describing the location unit instance confirms this:

gbbopen-user> (describe-instance ui)
Location #<location 1>

Instance name: 1
Space instances: None
Dimensional values: None
Non-link slots:

x: 50
y: 60

Link slots: None
gbbopen-user>

23



24



4 Deleting Instances

GBBopen retains created unit and space instances until they are explicitly deleted. This behavior is
important to blackboard applications, where shared information in the form of unit instances remains
available until a decision is made to remove them.

In this exercise, we explore some implications of deleting unit and space instances.

This exercise shows you how to:

• Delete a unit instance
• Create a space-instance hierarchy
• Delete a space instance
• Delete all unit and space instances from the blackboard repository

Prerequisites

If you ended the Common Lisp session used in the last exercise, begin a new session and evaluate the
following forms:

cl-user> (load "<install-dir>/initiate.lisp")
. . .

cl-user> :gbbopen-user
. . .

gbbopen-user> (define-unit-class location ()
(x y))

#<standard-unit-class location>
gbbopen-user> (defparameter ui (make-instance ’location :x 50 :y 60))
ui
gbbopen-user> (defparameter si (make-space-instance ’(known-world)))
si
gbbopen-user> (add-instance-to-space-instance

(make-instance ’location :x 80 :y 90)
si)

#<location 2>
gbbopen-user>

ASDF, clbuild, and Quicklisp users

Remember to (asdf:operate ’asdf:load-op ’gbbbopen) or (require :gbbopen)
in place of loading <install-dir>/initiate.lisp.

Step 1: Create a few more unit instances

Just to review, we created two location unit instances. The unit instance named 1 is no longer on
the known-world space instance, but it is still assigned to the global variable ui:

GBBopen 1.5 Tutorial
4 Deleting Instances 25



gbbopen-user> ui
#<location 1>
gbbopen-user>

The location unit instance named 2 is the only location unit instance on the known-world space
instance:

gbbopen-user> (find-instances ’location ’(known-world) :all)
(#<location 2>)
gbbopen-user>

Now, let’s create five more location unit instances. Enter:
gbbopen-user> (dotimes (i 5) (make-instance ’location))
nil
gbbopen-user>

Note that we did not specify x and y slot values for these new unit instances. We will explore the
implications of this shortly.

Step 2: Apply a function to all instances of a unit class

We did not assign the new location unit instances to global variables or add them to the
known-world space instance. Can we still reference them? If we know the names of the new unit
instances, we can use the find-instance-by-name function that we learned earlier. For example:
gbbopen-user> (find-instance-by-name 5 ’location)
#<location 5>
gbbopen-user>

It is often useful to perform some action on all instances of a unit class. GBBopen provides a mapping
function, or “iterator,” that repeatedly calls a function with each instance of a unit class as the
argument to the function. For example:

gbbopen-user> (map-instances-of-class #’print ’location)

#<location 6>
#<location 3>
#<location 7>
#<location 1>
#<location 2>
#<location 4>
#<location 5>
nil
gbbopen-user>

displays each of our location unit instances. Note that the exact order that location unit
instances are supplied to the print function may differ from the above example in your Common
Lisp implementation.

Currently, there is only one location unit instance on the known-world space instance:
gbbopen-user> (find-instances ’location ’(known-world) :all)
(#<location 2>)
gbbopen-user>

26
GBBopen 1.5 Tutorial
4 Deleting Instances



Let’s use map-instances-of-class to add all the location unit instances to the known-world:
gbbopen-user> (map-instances-of-class

#’(lambda (instance)
(add-instance-to-space-instance instance si))

’location)
Warning: In add-instance-to-space-instance: #<location 2> is already on

space instance #<standard-space-instance (known-world)>.
nil
gbbopen-user>

GBBopen warns us that the location 2 unit instance is already on the known-world and adds all
the other location instances. We can verify this by using find-instances:

gbbopen-user> (find-instances ’location ’(known-world) :all)
(#<location 7> #<location 6> #<location 5> #<location 4> #<location 3>
#<location 2> #<location 1>)

gbbopen-user>

For those who prefer a more iterative programming style, GBBopen provides a dolist-style macro,
do-instances-of-class, as an alternative to map-instances-of-class. So, to add all the location
unit instances to the known-world, we could have chosen to use the form:

(do-instances-of-class (instance ’location)
(add-instance-to-space-instance instance si))

instead of the map-instances-of-class version. As with things stylistic, the choice is yours.

Step 3: Delete a unit instance

Let’s delete the first location unit instance that we created:
gbbopen-user> (delete-instance ui)
#<deleted-unit-instance location 1>
gbbopen-user>

Note that the displayed representation indicates that the unit instance has been deleted.

We can no longer find the deleted unit instance by its name:
gbbopen-user> (find-instance-by-name 1 ’location)
nil
gbbopen-user>

and it is no longer included in a map-instances-of-class iteration:
gbbopen-user> (map-instances-of-class #’print ’location)

#<location 6>
#<location 3>
#<location 7>
#<location 2>
#<location 4>
#<location 5>
nil
gbbopen-user>

GBBopen 1.5 Tutorial
4 Deleting Instances 27



and it is no longer on the known-world space instance:
gbbopen-user> (find-instances ’location ’(known-world) :all)
(#<location 7> #<location 6> #<location 5> #<location 4> #<location 3>
#<location 2>)

gbbopen-user>

However, the deleted location unit instance is still assigned to the ui global variable:
gbbopen-user> ui
#<deleted-unit-class location 1>
gbbopen-user>

and that can lead to problems. Let’s try to place the deleted location unit instance on the
known-world space instance:

gbbopen-user> (add-instance-to-space-instance ui si)
Error: No methods applicable for generic function

#<standard-generic-function add-instance-to-space-instance> with args
(#<deleted-unit-instance location 1> #<standard-space-instance

(known-world)>)
of classes (deleted-unit-instance standard-space-instance)

gbbopen-user>> :a
gbbopen-user>

Most of GBBopen’s operations signal an error if they are given a deleted unit instance. This is
because delete-instance changes the class of the deleted unit instance to deleted-unit-instance
which, despite its name, is not a standard-unit-instance. We cannot use describe-instance to
verify this, because the deleted unit instance is no longer a unit instance, but we can use Common
Lisp’s describe function:
gbbopen-user> (describe ui)
#<deleted-unit-instance location 1> is an instance of

#<standard-class deleted-unit-instance>:
The following slots have :instance allocation:

instance-name 1
original-class #<standard-unit-class location>

gbbopen-user>

Note that the slots that we defined for location unit instances are not present in the
deleted-unit-instance object. A deleted unit instance has only two slots, instance-name and
original-class, which are set when the class of the deleted unit instance is changed to
deleted-unit-instance.

Several GBBopen operations on a deleted unit instance do not signal errors. In particular:
gbbopen-user> (instance-name-of ui)
1
gbbopen-user>

The value returned by instance-name-of, along with that by original-class-of, can be used to
identify the unit instance that, when deleted, became the deleted-unit-instance.

Typically, blackboard applications obtain unit instances from the blackboard repository (or as we will
see in Exercise 8, as an event argument) rather than maintaining references to them in variables.
This limits the possibility of retaining a deleted unit instance and performing GBBopen operations on
it. The deletion status of a unit instance can be determined using the instance-deleted-p predicate:

28
GBBopen 1.5 Tutorial
4 Deleting Instances



gbbopen-user> (instance-deleted-p ui)
t
gbbopen-user>

Step 4: Create a simple space-instance hierarchy

In the last exercise, we noted that space instances can be organized in hierarchical structures. To
illustrate this, let’s create a few more space instances:

gbbopen-user> (make-space-instance ’(known-world my-town))
#<standard-space-instance (known-world my-town)>
gbbopen-user> (make-space-instance ’(known-world my-town east-side))
#<standard-space-instance (known-world my-town east-side)>
gbbopen-user> (make-space-instance ’(known-world my-town west-side))
#<standard-space-instance (known-world my-town west-side)>
gbbopen-user>

Recall that the space-instance-path argument to make-space-instance is the complete list of
space-instance names, starting with the name of the most distant indirect parent. So, the my-town
space instance has the known-world as it’s parent and the east-side and west-side as children.
We can use describe-blackboard-repository to see this organization:

gbbopen-user> (describe-blackboard-repository)

Space Instance Contents
-------------- --------
known-world 6 instances (6 location)

my-town Empty
east-side Empty
west-side Empty

Unit Class Instances
---------- ---------
location 6
standard-space-instance 4

---------
10 instances

gbbopen-user>

Observe from the above description that child space instances that we created are not placed on their
parent. Unlike the directories in a file system in the analogy that we presented in the last exercise, in
GBBopen a space-instance hierarchy is orthogonal to containment. In fact, space instances are
actually unit instances (of the class standard-space-instance, by default) and a space instance can
be placed on other space instances—or even on itself. Typical blackboard applications do not involve
using space instances as unit instances, but this property of space instances is very powerful when it
is needed.

The functions parent-of and children-of are provided to traverse the space-instance hierarchy. For
example:

gbbopen-user> (children-of
(find-space-instance-by-path ’(known-world my-town)))

(#<standard-space-instance (known-world my-town west-side)>
#<standard-space-instance (known-world my-town east-side)>)

gbbopen-user>

GBBopen 1.5 Tutorial
4 Deleting Instances 29



Step 5: Add a unit instance to multiple space instances

Now, let’s add location 2 to the my-town and east-side space instances:
gbbopen-user> (let ((location-2 (find-instance-by-name 2 ’location)))

(add-instance-to-space-instance location-2 ’(known-world
my-town))

(add-instance-to-space-instance location-2 ’(known-world
my-town east-side)))

#<location 2>
gbbopen-user>

As we expect, location 2 is now on three space instances:
gbbopen-user> (describe-instance (find-instance-by-name 2 ’location))
Location #<location 2>

Instance name: 2
Space instances: ((known-world my-town east-side)

(known-world my-town)
(known-world))

Dimensional values: None
Non-link slots:

x: 80
y: 90

Link slots: None
gbbopen-user>

and the description of the blackboard repository is:
gbbopen-user> (describe-blackboard-repository)

Space Instance Contents
-------------- --------
known-world 6 instances (6 location)

my-town 1 instance (1 location)
east-side 1 instance (1 location)
west-side Empty

Unit Class Instances
---------- ---------
location 6
standard-space-instance 4

---------
10 instances

gbbopen-user>

Placing a unit instance on multiple space instances is useful when each space instance represents a
different view of unit instances. In this case, location 2 is in the known-world, in my-town, and on
the east-side:
gbbopen-user> (find-instances ’location ’(known-world my-town) :all)
(#<location 2>)
gbbopen-user> (find-instances ’location ’(known-world my-town east-side)

:all)
(#<location 2>)
gbbopen-user>

30
GBBopen 1.5 Tutorial
4 Deleting Instances



Step 6: Delete a space instance

Now let’s delete some of what we just created. Let’s delete the my-town space instance:

gbbopen-user> (delete-space-instance ’(known-world my-town))
#<deleted-unit-instance standard-space-instance (known-world my-town)>
gbbopen-user>

and describe the blackboard repository:

gbbopen-user> (describe-blackboard-repository)

Space Instance Contents
-------------- --------
known-world 6 instances (6 location)

Unit Class Instances
---------- ---------
location 6
standard-space-instance 1

---------
7 instances

gbbopen-user>

Notice that GBBopen has also deleted all the child space instances of my-town: both east-side and
west-side were also deleted. So, just as with our file-system directory analogy, space-instance
deletion is recursive over children and should be performed with caution.

Also note that deleting space instances did not delete any of the unit instances that were stored on
them. If we want to delete a space instance and all the unit instances that are stored on it, we must
explicitly delete the unit instances before deleting the space instance. For example, we could do:

gbbopen-user> (map-instances-on-space-instances #’delete-instance
’location ’(known-world my-town))

nil
gbbopen-user>

to delete the unit instances in my-town. However, we must keep in mind that a unit instance can
reside on multiple space instances; so deleting a unit instance that is on other space instances might
not be the desired action.

As is the case with map-instances-of-class, GBBopen provides a
do-instances-on-space-instances macro as an alternative to
map-instances-on-space-instances. So we could have chosen to use the form:

(do-instances-on-space-instances (instance ’location ’(known-world my-town))
(delete-instance instance))

to explicitly delete the location unit instances in my-town.

Step 7: Delete the Blackboard Repository

If we really want to get rid of all our unit and space instances, we can use the
delete-blackboard-repository function:

GBBopen 1.5 Tutorial
4 Deleting Instances 31



gbbopen-user> (delete-blackboard-repository)
t
gbbopen-user> (describe-blackboard-repository)
There are no space instances in the blackboard repository.
gbbopen-user> (map-instances-of-class #’print location)
nil
gbbopen-user>

Calling delete-blackboard-repository has deleted every space and unit instance, but it has not
eliminated our location unit class definition. Let’s create a location unit instance once again:

gbbopen-user> (make-instance ’location)
#<location 1>
gbbopen-user>

Note that deleting the blackboard repository also reset the counter for location instance names, so
the created unit instance is again named 1.

32



5 Enhancing Your Development Environment

Now that you are experienced creating and deleting unit and space instances in GBBopen, we will
take a short break before working further on our random-walk application. In the exercises thus far,
we have been working directly in Common Lisp’s REPL. As our application develops, we want to save
our code in files. In this exercise, we will provide recommendations for making your GBBopen and
Common Lisp environment more productive. Even if you have already customized your Common Lisp
setup, I recommend surveying this exercise for useful GBBopen tips.

This exercise shows you how to:

• Add GBBopen keyword commands to your Common Lisp implementation
• Customize your Common Lisp initialization file
• Set up GBBopen HyperDoc and Common Lisp HyperSpec access

Step 1: Autoloading GBBopen’s initiate.lisp file

Thus far, we have entered the forms:

cl-user> (load "<install-dir>/initiate.lisp")
. . .

cl-user> :gbbopen-user
. . .

gbbopen-user>

to compile and load needed GBBopen components and to set the current package to :gbbopen-user.
We can set up our Common Lisp environment so that we can do this (and eventually compile and load
our random-walk application) by issuing only a single REPL command.

Customizing your Common Lisp initialization file

I’m lazy and would rather not have to explicitly load the <install-dir>/initiate.lisp file each
time I start a new Common Lisp session. So, I have my Common Lisp’s initialization file load it for
me. To make it easy to similarly customize different Common Lisp implementations, I use the
following strategy:

1. I create a file, shared-init.lisp, in my home directory, containing the following:
(in-package :common-lisp-user)

;; My personal preferences. Note: Allegro CL requires
;; tpl:setq-default during initialization to retain changes
;; to these global variables (done in .clinit.cl):
(setf *print-case* ’:downcase)
(setf *compile-verbose* ’t)
(setf *load-verbose* ’t)

(let ((defaults *load-truename*))
(load (make-pathname

GBBopen 1.5 Tutorial
5 Enhancing Your Development Environment 33



;; where GBBopen is installed:
:directory ’(:absolute "usr" "local" "gbbopen")
:name "initiate"
:type "lisp"
:defaults defaults)))

The :directory argument to make-pathname is a Common Lisp absolute pathname that is
portable across all operating systems. I installed my GBBopen in /usr/local/gbbopen/, and
I specified this with the "usr", "local", and "gbbopen" elements in the :directory
argument. Change these elements as appropriate for the location of your GBBopen installation.

2. For each Common Lisp implementation that I use, I create a personal initialization file that
performs any implementation-specific initializations and then loads shared-init.lisp. For
example, here is the .clisprc initialization file that I use for CLISP:

(in-package :common-lisp-user)

;; enable maximum ANSI compliance:
(setf custom:*ansi* ’t)

(let ((defaults *load-truename*))
(load (make-pathname

:name "shared-init"
:type "lisp"
:defaults defaults)))

SBCL has a very strict interpretation of *load-truename* semantics, so my .sbclrc
initialization file is:

(in-package :common-lisp-user)

;; *load-truename* returns nil when used in SBCL’s .sbclrc
;; initialization file, so use (user-homedir-pathname):
(let ((defaults (user-homedir-pathname)))

(load (make-pathname
:name "shared-init"
:type "lisp"
:defaults defaults)))

Here is my .clinit.cl initialization file for Allegro CL:
(in-package :common-lisp-user)

;; Allegro CL requires tpl:setq-default during initialization
;; to retain changes to these global variables:
(tpl:setq-default *print-case* ’:downcase)
(tpl:setq-default *compile-verbose* ’t)
(tpl:setq-default *load-verbose* ’t)

(let ((defaults *load-truename*))
(load (make-pathname

:name "shared-init"
:type "lisp"
:defaults defaults)))

34
GBBopen 1.5 Tutorial

5 Enhancing Your Development Environment

http://www.clisp.org/
http://sbcl.sourceforge.net
http://franz.com/products/allegrocl/


The initialization file names for various Common Lisp implementations are:
ABCL .abclrc
Allegro CL .clinit.cl
CLISP .clisprc
Clozure CL ccl-init.lisp
CMUCL init.lisp
Digitool MCL (see below)
ECL .eclrc
LispWorks .lispworks
SBCL .sbclrc
Scieneer CL init.lisp
XCL .xclrc

Digitool MCL does not look for an initialization file in the user’s home directory. Instead it loads
the file init.lisp in it’s installation directory. One approach is to have that file load a personal
initialization file, say mcl-init.lisp, from the user’s home directory, if a mcl-init.lisp file
is present.

The Personal Edition of LispWorks does not load initialization files, requiring you to manually
load your .lispworks file each time you start up LispWorks.

The interpretation of where a user’s “home” directory is located is inconsistent on Windows.
Ideally, the “home directory” location used for the Common Lisp implementation’s initialization
file and the result of the Common Lisp function user-homedir-pathname should be
consistent. Then, by using the shared-init.lisp scheme, you only need to determine where
the initialization file should be for each Common Lisp implementation that you use, and then
you can have those implementation-specific initialization files load your shared-init.lisp
file from whichever directory you deem as your “home” directory.

Here is a quick way to have Common Lisp tell you where it thinks your “home” directory is
located:

cl-user> (not (princ (truename (user-homedir-pathname))))
C:\Documents and Settings\corkill\
nil
cl-user>

Alternatively, loading GBBopen’s <install-dir>/initiate.lisp file will display the “home”
directory.

We will refer to this directory from now on as your “homedir” directory.

3. With this setup in place, all that is needed to use GBBopen is to start up a Common Lisp and
type a GBBopen command, such as :gbbopen-user. My fingers thank me!

Step 2: Set up HyperDoc and HyperSpec access

If you are using Emacs in your Common Lisp development environment, you can make it easy to
bring up appropriate Common Lisp and GBBopen documentation in your browser. The file
<install-dir>/browse-hyperdoc.el defines an interactive Emacs command named
browse-hyperdoc and binds it to META-? (on most keyboards, META-? means pressing both Alt and
? keys at the same time) . To enable this Emacs command, add a command to load
<install-dir>/browse-hyperdoc.el in your .emacs initialization file:

;; GBBopen hyperdoc (where GBBopen was installed):
(load "<install-dir>/browse-hyperdoc")

GBBopen 1.5 Tutorial
5 Enhancing Your Development Environment 35

http://common-lisp.net/project/armedbear/
http://franz.com/products/allegrocl/
http://www.clisp.org/
http://trac.clozure.com/ccl
http://www.cons.org/cmucl/
http://www.digitool.com
http://common-lisp.net/project/ecl/
http://www.lispworks.com
http://sbcl.sourceforge.net
http://www.scieneer.com/scl/
http://armedbear.org/
http://www.digitool.com
http://www.lispworks.com
http://www.lispworks.com
http://www.gnu.org/software/emacs/emacs.html


If there is no .emacs file present in your home directory, simply create one containing the above
command. Once again, Windows users need to worry about where Emacs looks for their “home”
directory.

While you are editing your .emacs file, you might also want to add a command to load GBBopen’s
Emacs indentation customizations:

;; GBBopen indentations (where GBBopen was installed):
(load "<install-dir>/gbbopen-indent")

Adding the Common Lisp HyperSpec

The hyperspec.el utility is included in the SLIME and ILISP distributions. However, if
hyperspec.el is not already part of your Emacs, you can download it and explicitly load it from your
.emacs initialization file. Once hyperspec.el is present, GBBopen’s browse-hyperdoc Emacs
command will automatically defer to the Common Lisp HyperSpec when given a non-GBBopen entity.

I prefer to download a local copy of the Common Lisp HyperSpec using the down-loadable archive
provided by LispWorks, LTD. This allows me to quickly reference the HyperSpec without a network
connection. I set the value of common-lisp-hyperspec-root in my .emacs initialization file to a
URL that points to my local copy of the HyperSpec:

(setf common-lisp-hyperspec-root "file:/usr/local/CLHS/")

Non-Emacs access

If you are not using an Emacs-based environment, GBBopen provides a Common Lisp function,
browse-hyperdoc, that can be used to access GBBopen HyperDoc pages from Common Lisp.
GBBopen’s :os-interface module must be loaded to make browse-hyperdoc available. For
example:

cl-user> :os-interface
;; Loading <install-dir>/startup.lisp

. . .
;; Loading <install-dir>/<platform-dir>/tools/os-interface.fasl
gbbopen-tools> (browse-hyperdoc ’define-unit-class)
t
gbbopen-tools>

will display the GBBopen HyperDoc page for define-unit-class in your browser. Note that the
:gbbopen-user module requires (and therefore loads) the :os-interface module, so if you have
loaded :gbbopen-user, you do not need to do anything further in order to call browse-hyperdoc.

36

http://GBBopen.org/downloads/hyperspec.el
http://common-lisp.net/project/slime/
http://sourceforge.net/projects/ilisp/
http://www.lispworks.com/documentation/HyperSpec/
ftp://ftp.lispworks.com/pub/software_tools/reference/HyperSpec-7-0.tar.gz
http://www.lispworks.com


6 Working Within a File

Now that we’ve enhanced our GBBopen and Common Lisp development environment, let’s begin
developing the random-walk application in earnest.

This exercise shows you how to:

• Begin working with files for application development
• Compile and load an application file using the SLIME or ELI environments

Step 1: Create the tutorial-example directories

Create a directory to hold the random-walk application. I’m calling mine tutorial. Next, create a
subdirectory in that directory named source. The reason for doing this will become clear in an
upcoming exercise (see page 81). Here are the shell commands that I used to create my directories:

[~]$ mkdir tutorial
[~]$ cd tutorial
[~/tutorial]$ mkdir source
[~/tutorial]$

Step 2: Create the tutorial-example file

Start up a fresh Common Lisp session and load the :gbbopen-user module, using the REPL
command we set up in the last exercise:

cl-user> :gbbopen-user
;; Loading <install-dir>/startup.lisp

. . .
;; Loading <install-dir>/<platform-dir>/gbbopen/gbbopen-user.fasl
gbbopen-user>

Next, begin editing a new file named tutorial-example.lisp in the source subdirectory that you
just created. Even if you are more comfortable using another editor, use the editing facilities that are
provided by your Common Lisp environment. The development features of a quality Common Lisp
environment are well worth the price of learning a new editor. In an Emacs-based environment, such
as SLIME or Allegro CL’s ELI, typing C-x C-f will prompt you for the name of a file to editor or
create. (We will use Emacs key-binding notation, where C-x C-f means typing ^c followed by ^f.)

Type the following two forms into the tutorial-example.lisp file buffer:

(in-package :gbbopen-user)

(define-unit-class location ()
(x y))

The in-package form specifies the Common Lisp package that is made current when the file is
compiled or loaded. The first form in every Common Lisp source file that you create should begin with
an in-package form. This form is also used by most Common Lisp editing environments to set the
package associated with development operations.

GBBopen 1.5 Tutorial
6 Working Within a File 37

http://common-lisp.net/project/slime/
http://franz.com/products/allegrocl/


The define-unit-class definition is the same one we used in Exercise 2.

Now, save the file.

Step 3: Compile and load the tutorial-example file

At this point, we have been using Common Lisp’s development environment, but we have not loaded
the forms in our file into Common Lisp:

gbbopen-user> (make-instance ’location)
Error: No class named: location.
gbbopen-user>> :a
gbbopen-user>

We could use Common Lisp’s compile-file to compile the file and then load to load the resulting
compiled file. For example:

gbbopen-user> (load (compile-file "~/tutorial/source/tutorial-example.lisp"))
;; Compiling file ~/tutorial/source/tutorial-example.lisp
;; Loading ~/tutorial/source/tutorial-example.fasl
t
gbbopen-user>

but you should be able to compile and load the file directly from the editor buffer. In SLIME, the
command C-c C-k will compile and load the file currently being edited. Allegro’s ELI interface
compile-and-load command is C-c C-b. Identify and use the compile-and-load-file command in your
editing environment.

Verify that all is well by creating a location unit instance in the REPL:

gbbopen-user> (make-instance ’location)
#<location 1>
gbbopen-user>

Then delete the blackboard repository in preparation for the next exercise:

gbbopen-user> (delete-blackboard-repository)
t
gbbopen-user>

38



7 Adding Dimensions

A central concept in GBBopen is dimensionality. Dimensional abstraction of space instances, unit
instances, and proximity-based retrieval patterns is used to provide a semantically meaningful
separation of blackboard-repository storage mechanisms from system and application code. This
separation provides flexibility in developing and evolving complex blackboard applications and allows
GBBopen to change storage and search strategies and optimizations dynamically.

Each space instance can be created as a conceptual hyper-dimensional volume. Unit instances occupy
multidimensional extent based on their attributes. The location of a unit instance within the space
instance is determined by the intersection of the space instance’s dimensionality and the unit
instance’s dimension values.

GBBopen supports three types of dimensions:

• ordered: a real-number line

• boolean: true and false values

• enumerated: a set of named elements (the set can be either closed or infinite)

Determining the dimensionality of space and unit instances is an important part of designing a
blackboard application.

In this exercise, we will redefine the location unit class to have two ordered dimensions, x and y,
that represent Euclidean positions on a two-dimensional plane. Then we will create a
two-dimensional known-world space instance, create some location unit instances on the
known-world, and retrieve the instances based on their two-dimensional positions.

This exercise shows you how to:

• Add dimensional values to a unit-class definition

• Create a multidimensional space instance

• Retrieve unit instances from a space instance based on their dimensional values

• Compile and load individual forms directly from an Emacs file buffer using the SLIME or ELI
environments

Prerequisites

• The tutorial-example.lisp file created in the last exercise, containing:
(in-package :gbbopen-user)

(define-unit-class location ()
(x y))

• The :gbbopen-user module is loaded

Step 1: Add dimensions to the location unit class

Edit your tutorial-example.lisp file, and change the location unit-class definition as follows:

GBBopen 1.5 Tutorial
7 Adding Dimensions 39



(define-unit-class location ()
(x y)
(:dimensional-values

(x :point x)
(y :point y)))

In this tutorial, we will highlight code additions and changes using a black font.

The :dimensional-values unit-class option specifies that location unit instances have two
ordered dimensions, x and y, and that the value of each dimension will be a single numeric value
obtained from the slots x and y, respectively.

Because we chose to use the same name for each dimension and its associated slot value, our
:dimensional-values option might appear to be double-talk. We could have defined our class as:

(define-unit-class location ()
(x-slot y-slot)
(:dimensional-values

(x :point x-slot)
(y :point y-slot)))

which clarifies the semantics of the :dimensional-values option. Often, however, it is most
convenient to use the same name for a slot and the dimension associated with the slot’s value, so we
will stick with our original definition.

Step 2: Compile and load the new definition

We could compile and load the entire tutorial-example.lisp file just as we did in the last
exercise. However, as we develop our application it can be convenient to compile and load (and debug)
each form as we write it. Your Common Lisp development environment should provide this capability.
In SLIME, the command to compile the current top-level form is C-c C-c. In Allegro’s ELI, the
command is C-c C-x. Try compiling and loading just the new location unit-class definition.

Step 3: Make a location unit instance

Let’s test our new location unit class definition by making an instance. Enter the following form in
the REPL:

gbbopen-user> (defparameter ui (make-instance ’location :x 40 :y 60))
ui
gbbopen-user>

and display its description:

gbbopen-user> (describe-instance ui)
Location #<location 1>

Instance name: 1
Space instances: None
Dimensional values:

x: 40
y: 60

Non-link slots:
x: 40

40
GBBopen 1.5 Tutorial

7 Adding Dimensions



y: 60
Link slots: None

gbbopen-user>

Note the dimensional values for the x and y dimensions.

Step 4: Make the known-world space instance

Create the known-world space instance by evaluating:

gbbopen-user> (defparameter si (make-space-instance ’(known-world)))
si
gbbopen-user>

Step 5: Add the unit instance to the space instance

Now, add the location unit instance to the space instance:

gbbopen-user> (add-instance-to-space-instance ui si)
Warning: In add-instance-to-space-instance: #<location 1>

does not share any dimensions with space instance
#<standard-space-instance (known-world)>.

#<location 1>
gbbopen-user>

GBBopen has warned us that our location unit instance does not have any dimensions in common
with the known-world space instance (because we didn’t specify any dimensions for the
known-world). GBBopen dutifully added the unit instance, as shown by
describe-blackboard-repository:

gbbopen-user> (describe-blackboard-repository)

Space Instance Contents
-------------- --------
known-world 1 instance (1 location)

Unit Class Instances
---------- ---------
location 1
standard-space-instance 1

---------
2 instances

gbbopen-user>

but we cannot perform dimension-based retrieval of our location unit instance on the
known-world.

Step 6: Create a dimensioned known-world

Let’s delete the known-world and create another one—this time with x and y dimensions:

GBBopen 1.5 Tutorial
7 Adding Dimensions 41



gbbopen-user> (delete-space-instance si)

#<deleted-unit-instance standard-space-instance (known-world)>

gbbopen-user> (setf si (make-space-instance ’(known-world)

:dimensions ’((x :ordered) (y :ordered))))

#<standard-space-instance (known-world)>

gbbopen-user>

We have specified x and y as ordered dimensions, making the known-world a two-dimensional
Euclidean plane. (Flatlanders would be proud!)

Verify the dimensionality of the known-world space instance by evaluating:

gbbopen-user> (describe-space-instance si)

Standard-space-instance #<standard-space-instance (known-world)>

Allowed unit classes: t

Dimensions:

(x :ordered)

(y :ordered)

gbbopen-user>

Step 7: Add the location unit instance to the new known-world

Add the location unit instance to the new known-world space instance:

gbbopen-user> (add-instance-to-space-instance ui si)

#<location 1>

gbbopen-user>

The dimension warning is gone.

Step 8: Adding every location to the known-world automatically

Up to this point, we have used add-instance-to-space-instance to add each location unit
instance to the known-world space instance. We can tell GBBopen to automatically add new unit
instances to one or more space instances by using the :initial-space-instances class option in
define-unit-class.

Add the following :initial-space-instances class option to the location unit-class definition
in your tutorial-example.lisp file:

(define-unit-class location ()

(x y)

(:dimensional-values

(x :point x)

(y :point y))

(:initial-space-instances (known-world)))

Compile and load the new location unit-class definition.

42
GBBopen 1.5 Tutorial

7 Adding Dimensions



Step 9: Create more location unit instances

Let’s test our new location unit class definition by making another instance. Enter the following
form in the REPL:

gbbopen-user> (make-instance ’location :x 70 :y 30)
#<location 2>
gbbopen-user>

and confirm that the new location is on the known-world:

gbbopen-user> :dsbb

Space Instance Contents
-------------- --------
known-world 2 instances (2 location)

Unit Class Instances
---------- ---------
location 2
standard-space-instance 1

---------
3 instances

gbbopen-user>

Here we used GBBopen’s :dsbb REPL command, which is equivalent to evaluating
(describe-blackboard-repository). Describing the repository is a useful check that our unit
instances and space instances are being created and deleted as intended.

Now, let’s populate the known-world with a few more locations:

gbbopen-user> (make-instance ’location :x 20 :y 20)
#<location 3>
gbbopen-user> (make-instance ’location :x 25 :y 25)
#<location 4>
gbbopen-user> (make-instance ’location :x 20 :y 30)
#<location 5>
gbbopen-user>

and verify that they are all on the known-world:

gbbopen-user> :dsbb

Space Instance Contents
-------------- --------
known-world 5 instances (5 location)

Unit Class Instances
---------- ---------
location 5
standard-space-instance 1

---------
6 instances

gbbopen-user>

GBBopen 1.5 Tutorial
7 Adding Dimensions 43



Step 10: Dimensional retrieval

We have seen how we can use find-instances to retrieve all location unit instances from the
known-world:

gbbopen-user> (find-instances ’location ’(known-world) :all)
(#<location 5> #<location 4> #<location 3> #<location 2> #<location 1>)
gbbopen-user>

Now that we have added x and y dimensions to location unit instances and to the known-world,
we can retrieve location unit instances using dimensional patterns. For example, let’s retrieve the
unit instance positioned at (20,20):

gbbopen-user> (find-instances ’location ’(known-world)
’(and (= x 20) (= y 20)))

(#<location 3>)
gbbopen-user>

We can use describe-instance to verify that we found the desired location unit instance:

gbbopen-user> (find-instances ’location ’(known-world)
’(and (= x 20) (= y 20)))

(#<location 3>)
gbbopen-user> (describe-instance (first *))
Location #<location 3>

Instance name: 3
Space instances: ((known-world))
Dimensional values:

x: 20
y: 20

Non-link slots:
x: 20
y: 20

Link slots: None
gbbopen-user>

Note that we used Common Lisp’s REPL * variable that is always set to the value returned by
evaluating the last REPL expression (in this case, the result of find-instances).

Step 11: Customize the display of location unit instances

It would be convenient if we could easily see the coordinates of location unit instances without
having to describe them. Fortunately, GBBopen makes this is easy to do by providing the
print-instance-slots generic function that allows us to extend how Common Lisp’s print-object
displays location unit instances.

Add the following print-instance-slots method after the location unit-class definition in your
tutorial-example.lisp file:

(define-unit-class location ()
(x y)
(:dimensional-values

(x :point x)
(y :point y))

44
GBBopen 1.5 Tutorial

7 Adding Dimensions



(:initial-space-instances (known-world)))

(defmethod print-instance-slots ((location location) stream)
(call-next-method)
(when (and (slot-boundp location ’x)

(slot-boundp location ’y))
(format stream " (~s ~s)"

(x-of location)
(y-of location))))

The method first performs a (call-next-method) to produce the initial printed representation of
the location unit instance. It then checks that both x and y slots are bound and, if so, writes the
location’s coordinates to the output stream. Checking that the slots are bound is necessary to avoid
generating an error in the print-instance-slots if the slots have not been given a value. You should
always perform this safety check in any print-instance-slots methods. (GBBopen provides the
generic function print-instance-slot-value for use in safely displaying a slot value in
print-instance-slots methods. We did not use print-instance-slot-value here, as our
print-instance-slots method presents two slots, x and y, formatted together.)

Now, compile and load the print-instance-slots method and try it out:
gbbopen-user> (find-instances ’location ’(known-world)

’(= (x y) (20 20)))
(#<location 3 (20 20)>)

gbbopen-user>

Note that this time we used a two-dimensional (x,y) retrieval pattern rather than the conjunction of
two one-dimensional patterns that we used previously. The two patterns are equivalent, but often a
higher-dimensional pattern may be more convenient than a conjunction. Also note that we can see
immediately that we retrieved the desired location.

Step 12: More dimensional retrievals

Let’s try some additional dimensional retrievals. First, find all location unit instances with an x
position of 20:

gbbopen-user> (find-instances ’location ’(known-world)
’(= x 20))

(#<location 5 (20 30)> #<location 3 (20 20)>)
gbbopen-user>

Find all location unit instances whose x and y coordinates are less than or equal to 25:
gbbopen-user> (find-instances ’location ’(known-world)

’(<= (x y) (25 25)))
(#<location 4 (25 25)> #<location 3 (20 20)>)
gbbopen-user>

Find all location unit instances whose x coordinates are between 0 and 40 (inclusive) and whose y
coordinates are between 60 and 100 (inclusive):

gbbopen-user> (find-instances ’location ’(known-world)
’(within (x y) ((0 40) (60 100))))

(#<location 1 (40 60)>)
gbbopen-user>

GBBopen 1.5 Tutorial
7 Adding Dimensions 45



Find all location unit instances whose coordinates are not within the above region:

gbbopen-user> (find-instances ’location ’(known-world)
’(not (within (x y) ((0 40) (60 100)))))

(#<location 5 (20 30)> #<location 4 (25 25)> #<location 3 (20 20)>
#<location 2 (70 30)>)

gbbopen-user>

Step 13: Change a dimensional value

Recall that we assigned location 1 to the global variable ui:

gbbopen-user> ui
#<location 1 (40 60)>
gbbopen-user>

and we can retrieve it by its x and y coordinates:

gbbopen-user> (find-instances ’location ’(known-world)
’(= (x y) (40 60)))

(#<location 1 (40 60)>)
gbbopen-user>

Let’s change its x position to 80 and try retrieving it again:

gbbopen-user> (setf (x-of ui) 80)
80
gbbopen-user> (find-instances ’location ’(known-world)

’(= (x y) (40 60)))
nil
gbbopen-user>

It has moved on the known-world. As expected, the location 1 unit instance is now at (80, 60):

gbbopen-user> (find-instances ’location ’(known-world)
’(= (x y) (80 60)))

(#<location 1 (80 60)>)
gbbopen-user>

Also note that the textual representation of location 1 shows the new x slot value.

46



8 Using a Control Shell

A control shell is one of the three major components of a blackboard system (along with KSs and the
blackboard). The control shell directs the problem-solving process by managing how KSs respond to
contributions that are placed on the blackboard by an executing KS and to other events that may be
triggered by the application or received from external sources. In this exercise we will use a control
shell called the “Agenda Shell.”

GBBopen’s Agenda Shell is a generalization of the priority-based scheduling approach that was used
in the original Hearsay-II blackboard architecture. The Agenda Shell manages KS definitions, and it
initiates and terminates KS activities by:

• Triggering KSs in response to events
• Deciding which triggered KSs should be activated and their priority rating
• Maintaining a rating-based queue of pending KS activations (KSAs)
• Executing the top-rated KSAs, one at a time

The Agenda Shell is highly customizable and extensible, and it can be used as the foundation for
implementing advanced control mechanisms. We will use only the most basic Agenda Shell
capabilities in this Tutorial.

This exercise shows you how to:

• Load GBBopen’s Agenda Shell control shell
• Start the Agenda Shell executing
• Define a KS
• Display control-shell activities (control-shell events)
• Use control-shell stepping

Prerequisites

The tutorial-example.lisp file as modified thus far:

(in-package :gbbopen-user)

(define-unit-class location ()
(x y)
(:dimensional-values

(x :point x)
(y :point y))

(:initial-space-instances (known-world)))

(defmethod print-instance-slots ((location location) stream)
(call-next-method)
(when (and (slot-boundp location ’x)

(slot-boundp location ’y))
(format stream " (~s ~s)"

(x-of location)
(y-of location))))

GBBopen 1.5 Tutorial
8 Using a Control Shell 47



Step 1: Load the Agenda Shell

Start up a fresh Common Lisp session and load the :agenda-shell-user module, using the
:agenda-shell-user REPL command:
cl-user> :agenda-shell-user
;; Loading <install-dir>/startup.lisp

. . .
;; Loading <install-dir>/<platform-dir>/gbbopen/
;; control-shells/agenda-shell-user.fasl
gbbopen-user>

This loads everything that we’ve been loading with the :gbbopen-user module and, additionally,
GBBopen’s Agenda Shell control shell. As with the :gbbopen-user REPL command, the current
package in the REPL is set to the :gbbopen-user package.

Step 2: Run the control shell

Now, start the Agenda Shell:
gbbopen-user> (start-control-shell)
;; Control shell 1 started
;; No executable KSAs remain, exiting control shell
;; Control shell 1 exited: 2 cycles completed
;; Run time: 0 seconds
;; Elapsed time: 0 seconds
:quiescence
gbbopen-user>

What just happened? The Agenda Shell began executing and looked for something to do. However, we
have not yet defined any knowledge sources (KSs), so the Agenda Shell indicates that it did not find
any executable KSAs in its initial KS-execution cycle. This situation is called quiescence and, by
default, the Agenda Shell signals that quiescence has occurred and then continues for an additional
KS-execution cycle in case any executable KSAs resulted from the quiescence signal. Again, no
executable KSAs were found in cycle 2, so the Agenda Shell exits due to :quiescence.

Note that the Agenda Shell requires that the idle-loop process has been started on CMUCL and that
multiprocessing has been started on LispWorks. (An error message will instruct you on what to do if
this is not the case.)

Step 3: Define a KS

So let’s define a KS!

Edit your tutorial-example.lisp file and add the following function and KS definition to the end
of the tutorial-example.lisp file:

(define-unit-class location ()
(x y)
(:dimensional-values

(x :point x)
(y :point y))

(:initial-space-instances (known-world)))

48
GBBopen 1.5 Tutorial

8 Using a Control Shell

http://www.cons.org/cmucl/
http://www.lispworks.com


(defmethod print-instance-slots ((location location) stream)
(call-next-method)
(when (and (slot-boundp location ’x)

(slot-boundp location ’y))
(format stream " (~s ~s)"

(x-of location)
(y-of location))))

;;; ====================================================================
;;; Startup KS

(defun startup-ks-function (ksa)
(declare (ignore ksa))
;; Create an initial location unit instance at (0,0):
(make-instance ’location :x 0 :y 0))

(define-ks startup-ks
:trigger-events ((control-shell-started-event))
:execution-function ’startup-ks-function)

The function startup-ks-function implements the KS. The Agenda Shell always calls a KS’s
execution function with a single argument, a ksa unit instance that represents the activation of the
KS. For the present, we will ignore the ksa argument. Our simple startup-ks-function creates a
location unit instance at the center of the known-world, coordinate (0,0).

The define-ks form defines a KS named startup-ks to the Agenda Shell. The :trigger-events
value indicates that the KS should be triggered when an event called
control-shell-started-event is signaled. The Agenda Shell signals
control-shell-started-event once, when the control shell is started. The
:execution-function names the function (that we just defined) that implements the KS.

Compile and load the entire tutorial-example.lisp file directly from the editor buffer (using
C-c C-k in SLIME; C-c C-b in ELI).

The Agenda Shell creates a ks unit instance for each KS that we define:

gbbopen-user> (map-instances-of-class #’print ’ks)
#<ks startup-ks>
nil
gbbopen-user>

Note that the name of the ks unit instance is the name of the KS.

Step 4: Make the known-world

Before we can run our KS, we must make the known-world space instance:

gbbopen-user> (make-space-instance ’(known-world)
:dimensions ’((x :ordered) (y :ordered))))

#<standard-space-instance (known-world)>
gbbopen-user>

GBBopen 1.5 Tutorial
8 Using a Control Shell 49



Step 5: Start the control shell

Start the Agenda Shell again:
gbbopen-user> (start-control-shell)
;; Control shell 1 started
;; No executable KSAs remain, exiting control shell
;; Control shell 1 exited: 3 cycles completed
;; Run time: 0 seconds
;; Elapsed time: 0 seconds
:quiescence
gbbopen-user>

Did it work? Let’s describe the blackboard repository:
gbbopen-user> :dsbb

Space Instance Contents
-------------- --------
known-world 1 instances (1 location)

Unit Class Instances
---------- ---------
control-shell 1 *
ks 1 +
ksa-queue 2 +
location 1
ordered-ksa-queue 1 +
standard-space-instance 1

---------
7 instances

gbbopen-user>

The initial location unit instance is there!

Note that some other unit instances have been created by the control shell. There is one ks unit
instance, our startup-ks KS, as well as two ksa-queue and one ordered-ksa-queue unit
instances. The ordered-ksa-queue is the rating-based queue of pending KSAs (no pending KSAs
remain on it) and the two ksa-queue queues are the Agenda Shell’s executed KSAs and obviated
KSAs queues (both empty). We will discuss these queues in a later exercise.

The ks, ksa-queue, ordered-ksa-queue unit-instance counts are followed by plus signs (+). This
indicates that these unit classes have been defined to be retained, meaning that their instances are
not deleted by our call to delete-blackboard-repository. The plus sign indicates that the retention
attribute will be propagated to all subclasses of those unit classes; retained, but not propagated,
would be shown by an asterisk (*).

Let’s verify this behavior by calling delete-blackboard-repository and then describe the
blackboard repository:

gbbopen-user> (delete-blackboard-repository)
t
gbbopen-user> :dsbb
There are no space instances in the blackboard repository.

Unit Class Instances

50
GBBopen 1.5 Tutorial

8 Using a Control Shell



---------- ---------
control-shell 1 *
ks 1 +
ksa-queue 2 +
ordered-ksa-queue 1 +
gbbopen-user>

Step 6: Display control shell activities

With all but the retained unit instances deleted from the blackboard repository, let’s rerun the control
shell. However, this time we will ask GBBopen to display more of what the control shell is doing.
First, enable display of all control-shell and instance-creation events by evaluating:

gbbopen-user> (enable-event-printing ’(control-shell-event :plus-subevents))
nil
gbbopen-user> (enable-event-printing ’instance-created-event)
nil
gbbopen-user>

or the shorthand equivalent:
gbbopen-user> (enable-event-printing ’(control-shell-event +))
nil
gbbopen-user> (enable-event-printing ’instance-created-event)
nil
gbbopen-user>

We will cover events, event printing, and event functions in greater detail in a later exercise.

Start the Agenda Shell once again:
gbbopen-user> (start-control-shell)
;; Control shell 1 started
=> Control-shell-started-event
=> Control-shell-cycle-event

:cycle 1
=> Instance-created-event

:instance #<ksa 1 startup-ks 1>
=> Ksa-activated-event

:instance #<ksa 1 startup-ks 1>
:cycle 1

=> Ksa-executing-event
:instance #<ksa 1 startup-ks 1>
:cycle 1

=> Instance-created-event
:instance #<location 1 (0 0)>

=> Control-shell-cycle-event
:cycle 2

=> Quiescence-event
=> Control-shell-cycle-event

:cycle 3
;; No executable KSAs remain, exiting control shell
;; Control shell 1 exited: 3 cycles completed
;; Run time: 0 seconds

GBBopen 1.5 Tutorial
8 Using a Control Shell 51



;; Elapsed time: 0 seconds
:quiescence
gbbopen-user>

Step 7: Control-shell stepping

Let’s rerun the control shell once again, but this time we will enable control-shell stepping. Again,
delete the blackboard repository:

gbbopen-user> (delete-blackboard-repository)
t
gbbopen-user>

and disable the event printing that we enabled in the last step:

gbbopen-user> (disable-event-printing)
nil
gbbopen-user>

Now start the Agenda Shell, this time with stepping enabled:

gbbopen-user> (start-control-shell :stepping ’t)
;; Control shell 1 started
>> CS Step (cycle 1):

About to process event #<control-shell-started-event>... [? entered]
Stepping commands (follow with <Return>):

d Disable this kind of stepping (:process-event)
e Enable another kind of stepping
f Evaluate a form
h or ? Help (this text)
q Quit (disable all stepping and continue)
s Show enabled stepping kinds
x Exit control shell
= Describe the object of interest (bound to ==)
+ Enable all stepping
- Disable all stepping
<Space> Continue (resume processing)

>> CS Step (cycle 1):
About to process event #<control-shell-started-event>... [<Return>

entered]
>> CS Step (cycle 1):

About to activate KS startup-ks on
control-shell-started-event... [<Return> entered]

>> CS Step (cycle 1):
About to execute KSA #<ksa 1 startup-ks 1>... [<Return> entered]

<< KSA 1 returned: (#<location 1 (0 0)>)
>> CS Step (cycle 2):

About to signal quiescence... [<Return> entered]
>> CS Step (cycle 3):

About to signal quiescence... [<Return> entered]
;; No executable KSAs remain, exiting control shell
;; Control shell 1 exited: 3 cycles completed
;; Run time: 0 seconds

52
GBBopen 1.5 Tutorial

8 Using a Control Shell



;; Elapsed time: 1 minute, 6 seconds
:quiescence
gbbopen-user>

53



54



9 Application Startup and Event Functions

In the last exercise, we needed to create the known-world space instance, with x and y dimensions,
before we started the Agenda Shell. We also needed to call delete-blackboard-repository before
calling start-control-shell to execute another run of our developing application. It is convenient to
have these activities performed automatically whenever the control shell is started, so we’ll do so in
this exercise.

This exercise shows you how to:

• Define a function to perform all application-specific initialization and re-execution activities
• Automatically invoke the initialization/re-execution function at control-shell startup using

GBBopen’s event-function capabilities
• Restrict the classes of unit instances that can be stored on a space instance
• Specify the dimensionality of a space instance relative to the dimensional specifications of a unit

class

Prerequisites

• The tutorial-example.lisp file as modified thus far:

(in-package :gbbopen-user)

(define-unit-class location ()
(x y)
(:dimensional-values

(x :point x)
(y :point y))

(:initial-space-instances (known-world)))

(defmethod print-instance-slots ((location location) stream)
(call-next-method)
(when (and (slot-boundp location ’x)

(slot-boundp location ’y))
(format stream " (~s ~s)"

(x-of location)
(y-of location))))

;;; ====================================================================
;;; Startup KS

(defun startup-ks-function (ksa)
(declare (ignore ksa))
;; Create an initial location unit instance at (0,0):
(make-instance ’location :x 0 :y 0))

(define-ks startup-ks
:trigger-events ((control-shell-started-event))
:execution-function ’startup-ks-function)

GBBopen 1.5 Tutorial
9 Application Startup and Event Functions 55



• The :agenda-shell-user module is loaded

Step 1: Define an initialization function

Edit your tutorial-example.lisp file and add the following function definition at the end of the
file:

(defun initializations (event-name &key &allow-other-keys)
(declare (ignore event-name))
;; Clean up any previous run:
(delete-blackboard-repository)
;; Make a new known-world space instance:
(make-space-instance
’(known-world)
:dimensions ’((x :ordered) (y :ordered))))

The first thing to note about the function definition is the argument signature: initializations is
to be invoked with an event name (which is ignored in our function) and possibly other keyword
arguments (indicated by the &key and &allow-other-keys lambda list keywords). This argument
signature conforms to GBBopen’s event-function capabilities, which will be introduced in the next
step in this exercise.

When initializations executes, it deletes all of our application unit and space instances from the
blackboard repository. Only ks, ksa-queue, and ordered-ksa-queue unit instances, which are
defined by the control shell as retained, are not deleted by delete-blackboard-repository. Then
initializations creates a new (known-world) space instance with ordered dimensions x and y.

Step 2: Add an event function

GBBopen allows you to attach functions, called event functions, that are called whenever a specific
event is signaled. Each event function must accept the arguments associated with every event class
to which it is added. In addition, the function should accept additional arguments that are associated
with all subevents of the specified event classes. This is achieved by specifying &allow-other-keys
in the lambda list of the function.

Here are GBBopen’s defined event classes when the Agenda Shell has been loaded:

Event classes shown within rectangles are abstract event classes that cannot be signaled.
Nevertheless, abstract event classes are very convenient if we wish to attach an event function to an
entire subtree of event classes. We used abstract event classes to advantage earlier when we enabled
display of all control-shell events by evaluating:

gbbopen-user> (enable-event-printing ’(control-shell-event :plus-subevents))
nil
gbbopen-user>

or the shorthand equivalent:

56
GBBopen 1.5 Tutorial

9 Application Startup and Event Functions



gbbopen-user> (enable-event-printing ’(control-shell-event +))
nil
gbbopen-user>

Add the following form at the end of your tutorial-example.lisp file:

(add-event-function ’initializations ’control-shell-started-event
;; Initializations should be done first!
:priority 100)

(We’ll place the add-event-function form immediately after the initializations function
definition in our file, but this choice of location is purely a code organizational style preference—the
form could be placed anywhere relative to the function definition.)

Step 3: Run the application

Start a fresh Common Lisp session, compile and load the tutorial-example.lisp file directly from
the editor buffer (using C-c C-k in SLIME; C-c C-b in ELI) and start the Agenda Shell again:

gbbopen-user> (start-control-shell)
;; Control shell 1 started
;; No executable KSAs remain, exiting control shell
;; Control shell 1 exited: 3 cycles completed
;; Run time: 0 seconds
;; Elapsed time: 0 seconds
:quiescence
gbbopen-user>

Note that our developing application performs the same as it did in the last exercise, but now our
initializations event function is taking care of all the details of starting up our application. We
no longer have to remember to create the known-world space instance or to delete the blackboard
repository before running the application another time.

Step 4: Run it Again

Let’s verify that we can re-run our application. Without doing anything else, start the Agenda Shell
again:

gbbopen-user> (start-control-shell)
;; Control shell 1 started
;; No executable KSAs remain, exiting control shell
;; Control shell 1 exited: 3 cycles completed
;; Run time: 0 seconds
;; Elapsed time: 0 seconds
:quiescence
gbbopen-user>

As before, our initializations event function took care of all the details of starting up our
application.

GBBopen 1.5 Tutorial
9 Application Startup and Event Functions 57



Step 5: It’s a new world. . .

GBBopen allows us to restrict the classes of unit instances that can be stored on a space instance. For
example, we can limit the known-world to location unit instances by specifying an
:allowed-unit-classes value to make-space-instance:

(defun initializations (event-name &key &allow-other-keys)
(declare (ignore event-name))
;; Clean up any previous run:
(delete-blackboard-repository)
;; Make a new known-world space instance:
(make-space-instance
’(known-world)
:allowed-unit-classes ’(location)
:dimensions ’((x :ordered) (y :ordered))))

Attempting to add any unit-instance that is not a location to known-world will now generate an
error.

It is often convenient to specify the dimensions of a space-instance relative to those of one or more
unit classes. Edit the definition of initializations, removing the x and y dimensions specification:

(defun initializations (event-name &key &allow-other-keys)
(declare (ignore event-name))
;; Clean up any previous run:
(delete-blackboard-repository)
;; Make a new known-world space instance:
(make-space-instance
’(known-world)
:allowed-unit-classes ’(location)
:dimensions ’((x :ordered) (y :ordered))))

and replacing it with a call of dimensions-of to obtain the dimensions associated with instances of
the location unit class:

(defun initializations (event-name &key &allow-other-keys)
(declare (ignore event-name))
;; Clean up any previous run:
(delete-blackboard-repository)
;; Make a new known-world space instance:
(make-space-instance
’(known-world)
:allowed-unit-classes ’(location)
:dimensions (dimensions-of ’location)))

Step 6: Run the application again

Compile and load the tutorial-example.lisp file directly from the editor buffer (using C-c C-k
in SLIME; C-c C-b in ELI) and start the Agenda Shell again:

gbbopen-user> (start-control-shell)
;; Control shell 1 started
;; No executable KSAs remain, exiting control shell
;; Control shell 1 exited: 3 cycles completed

58
GBBopen 1.5 Tutorial

9 Application Startup and Event Functions



;; Run time: 0 seconds
;; Elapsed time: 0 seconds
:quiescence
gbbopen-user>

Verify the dimensionality of the known-world space instance by evaluating:

gbbopen-user> (describe-space-instance ’(known-world))
Standard-space-instance #<standard-space-instance (known-world)>

Allowed unit classes: t
Dimensions:

(x :ordered)
(y :ordered)

gbbopen-user>

59



60



10 Add Another KS

The last exercise made it easy to initialize and run our application repeatedly by simply starting the
Agenda Shell. We also specified the dimensionality of our known-world space instance relative to the
dimensional specifications of the location unit class. With these niceties in place, its time to move
beyond our initial location unit instance.

This exercise shows you how to:

• Add an additional dimension to a unit class
• Define a KS that obtains its execution-context information from its triggering unit instance
• Extend the random-walk application to do some walking
• Explore the resulting random walk

Prerequisites

• The tutorial-example.lisp file as modified thus far:

(in-package :gbbopen-user)

(define-unit-class location ()
(x y)
(:dimensional-values

(x :point x)
(y :point y))

(:initial-space-instances (known-world)))

(defmethod print-instance-slots ((location location) stream)
(call-next-method)
(when (and (slot-boundp location ’x)

(slot-boundp location ’y))
(format stream " (~s ~s)"

(x-of location)
(y-of location))))

;;; ====================================================================
;;; Startup KS

(defun startup-ks-function (ksa)
(declare (ignore ksa))
;; Create an initial location unit instance at (0,0):
(make-instance ’location :x 0 :y 0))

(define-ks startup-ks
:trigger-events ((control-shell-started-event))
:execution-function ’startup-ks-function)

;;; ====================================================================
;;; Initializations (run at Agenda Shell startup)

GBBopen 1.5 Tutorial
10 Add Another KS 61



(defun initializations (event-name &key &allow-other-keys)
(declare (ignore event-name))
;; Clean up any previous run:
(delete-blackboard-repository)
;; Make a new known-world space instance:
(make-space-instance
’(known-world)
:dimensions (dimensions-of ’location)))

(add-event-function ’initializations ’control-shell-started-event
;; Initializations should be done first!
:priority 100)

• The :agenda-shell-user module is loaded

Step 1: Add another dimension

It’s time we introduce the notion of time to our application. Edit the location unit-class definition in
tutorial-example.lisp, adding a new slot, time, to the location unit class definition and a
corresponding time dimensional value:

(define-unit-class location ()
(time
x y)

(:dimensional-values
(time :point time)
(x :point x)
(y :point y))

(:initial-space-instances (known-world)))

Recall that we specified that the dimensions of the known-world space instance that is created by
our initializations function relative to the dimensions of the location unit class:

(make-space-instance
’(known-world)
:dimensions (dimensions-of ’location)))

Therefore, we don’t need to modify our call to make-space-instance in order to add time as a
dimension of known-world.

Next, modify startup-ks-function in tutorial-example.lisp so that it creates the initial
location unit instance at time 0:

(defun startup-ks-function (ksa)
(declare (ignore ksa))
;; Create an initial location unit instance at (0,0) at time 0:
(make-instance ’location :time 0 :x 0 :y 0))

Step 2: A test of time

Let’s verify our work. Compile and load the tutorial-example.lisp file directly from the editor
buffer (using C-c C-k in SLIME; C-c C-b in ELI) and start the Agenda Shell:

62
GBBopen 1.5 Tutorial
10 Add Another KS



gbbopen-user> (start-control-shell)
;; Control shell 1 started
;; No executable KSAs remain, exiting control shell
;; Control shell 1 exited: 3 cycles completed
;; Run time: 0 seconds
;; Elapsed time: 0 seconds
:quiescence
gbbopen-user>

Check that the initial location unit instance is at time zero:

gbbopen-user> (describe-instance (find-instance-by-name 1 ’location))
Location #<location 1 (0 0)>

Instance name: 1
Space instances: ((known-world))
Dimensional values:

time: 0
x: 40
y: 60

Non-link slots:
time: 0
x: 40
y : 60

Link slots: None
gbbopen-user>

Step 3: Define another KS

Define a KS called random-walk-ks that:

• Is triggered when a location unit instance is created
• Has a constant KSA rating of 100
• Has an execution function called random-walk-ks-function, which:

– Checks if we’ve already walked for 75 locations and prints a message if we have.
– Otherwise:
∗ Determines a random location for which the x and y values are within 10 of the x and y

values of the triggering unit instance (that is, the location instance whose creation
triggered the random-walk-ks KS)

∗ If both of the x and y values for the new random location are between -50 and 50,
creates a location unit instance at the random location; otherwise, prints a message
indicating that we’ve walked off the world

Step 3a: Define a utility function

Begin implementing the random-walk-ks by adding the following utility function to the end of your
tutorial-example.lisp file:

;;; ====================================================================
;;; Random-walk KS

(defun add-linear-variance (value max-variance)

GBBopen 1.5 Tutorial
10 Add Another KS 63



;;; Returns a new random value in the interval
;;; [(- value max-variance), (+ value max-variance)]
(+ value (- (random (1+ (* max-variance 2))) max-variance)))

Then compile the definition (using C-c C-c in SLIME or C-c C-x in ELI) and evaluate the following
test in the REPL:

gbbopen-user> (dotimes (i 15) (printv (add-linear-variance 0 10)))
;; (add-linear-variance 0 10) => 8
;; (add-linear-variance 0 10) => 9
;; (add-linear-variance 0 10) => 4
;; (add-linear-variance 0 10) => 3
;; (add-linear-variance 0 10) => -4
;; (add-linear-variance 0 10) => -10
;; (add-linear-variance 0 10) => -1
;; (add-linear-variance 0 10) => 0
;; (add-linear-variance 0 10) => 4
;; (add-linear-variance 0 10) => 5
;; (add-linear-variance 0 10) => 8
;; (add-linear-variance 0 10) => -5
;; (add-linear-variance 0 10) => -3
;; (add-linear-variance 0 10) => 7
;; (add-linear-variance 0 10) => 6
nil
gbbopen-user>

Because add-linear-variance is stochastic, your results will be similar but not identical. Note
that we used GBBopen’s printv macro to display the result of each generated value. Printv can
greatly assist debugging by printing forms and the results of evaluating them. Printv can be
transparently wrapped around any form in a complex function definition, as it evaluates and displays
all the forms in its body and returns the values resulting from evaluating the last form:

gbbopen-user> (printv "Some multiple values" (values 1 2) "Some more"
(values 3 4 5))

;; Some multiple values
;; (values 1 2) => 1; 2
;; Some more
;; (values 3 4 5) => 3; 4; 5
4
5
6
gbbopen-user>

Step 3b: Define the random-walk-ks execution function

Next add the following KS-execution function to the end of your tutorial-example.lisp file:

(defun random-walk-ks-function (ksa)
;;; Move to the next (random) location in the world
(let* ((trigger-instance (sole-trigger-instance-of ksa))

;; The new time is one greater than the stimulus’s time:
(time (1+ (time-of trigger-instance))))

(cond

64
GBBopen 1.5 Tutorial
10 Add Another KS



;; If the maximum time value (75) is reached, tell the user we’ve
;; walked too long:
((>= time 75) (format t "~2&Walked too long.~%"))
(t ;; The new location is +/- 10 of the stimulus’s location:
(let ((x (add-linear-variance (x-of trigger-instance) 10))

(y (add-linear-variance (y-of trigger-instance) 10)))
(cond
;; Check that the new location is within the known-world
;; boundaries. If so, create the new location instance:
((and (<= -50 x 50) (<= -50 y 50))
(make-instance ’location

:time time
:x x
:y y))

;; Otherwise, tell the user that we’ve walked too far away:
(t (format t "~2&Walked off the world: (~d, ~d).~%" x y))))))))

Unlike the KS-execution functions that we have defined previously, random-walk-ks-function
does not ignore its ksa argument. Instead, it calls sole-trigger-instance-of with the ksa
unit-instance argument in order to obtain the location unit instance whose creation triggered the
KSA. This pattern of obtaining the unit instance that triggered a KSA and then using that triggering
unit instance as the context for the KS execution is typical of many KSs.

Step 3c: Add the random-walk-ks definition

Finally, add this define-ks form to the end of your tutorial-example.lisp file to complete the
random-walk-ks definition:

(define-ks random-walk-ks
:trigger-events ((instance-created-event location))
:rating 100
:execution-function ’random-walk-ks-function)

Step 4: Run the application

Compile and load the random-walk-ks forms, and then start the Agenda Shell:

gbbopen-user> (start-control-shell)
;; Control shell 1 started

Walked off the world: (23, 55).
;; No executable KSAs remain, exiting control shell
;; Control shell 1 exited: 64 cycles completed
;; Run time: 0.01 seconds
;; Elapsed time: 0 seconds
:quiescence
gbbopen-user>

It looks like something happened! (Again, because add-linear-variance is stochastic, your results
will be similar but not identical.) Let’s look at the blackboard repository and see how many location
unit instances were created:

GBBopen 1.5 Tutorial
10 Add Another KS 65



gbbopen-user> :dsbb

Space Instance Contents
-------------- --------
known-world 61 instances (61 location)

Unit Class Instances
---------- ---------
control-shell 1 *
ks 1 +
ksa-queue 2 +
location 61
ordered-ksa-queue 1 +
standard-space-instance 1

---------
67 instances

gbbopen-user>

The 61 location instances makes sense. Previously, it required 3 control-shell cycles to create the
initial location unit instance (one to execute the initial-ks KSA followed by two additional
cycles of quiescence before the Agenda Shell exits). We now create one additional location unit
instance with every execution of random-walk-ks, so we always create 3 fewer location instances
than the total number of control-shell cycles.

Step 5: Where have we been?

It would be interesting to see where our random walk has taken us. We could use GBBopen’s
map-instances-of-class iterator to print each of the location unit instances:

gbbopen-user> (map-instances-of-class #’print ’location)

#<location 58 (5 31)>
#<location 13 (-7 10)>
#<location 26 (-40 35)>
#<location 39 (-4 3)>
#<location 52 (2 23)>
#<location 7 (3 17)>
#<location 20 (2 27)>
#<location 33 (-25 6)>
#<location 46 (-2 32)>

. . .
#<location 31 (-22 18)>
#<location 44 (-7 14)>
#<location 57 (2 41)>
#<location 12 (-15 15)>
#<location 25 (-32 38)>
#<location 38 (-10 -4)>
#<location 51 (-2 16)>
#<location 6 (10 27)>
#<location 19 (-1 17)>
#<location 32 (-25 12)>
#<location 45 (-7 23)>

66
GBBopen 1.5 Tutorial
10 Add Another KS



nil
gbbopen-user>

Unfortunately, the order that unit instances are supplied to the print function is not controllable.
Our walk would be much clearer if we printed the location unit instances in time order.

We might consider taking advantage of the instance names that GBBopen assigns to unit instances.
We could do something like the following:

gbbopen-user> (dotimes (i 76)
(let ((location (find-instance-by-name i ’location)))

(when location
(print location))))

#<location 1 (0 0)>
#<location 2 (10 4)>
#<location 3 (19 10)>
#<location 4 (14 9)>
#<location 5 (14 18)>
#<location 6 (10 27)>
#<location 7 (3 17)>
#<location 8 (-6 20)>
#<location 9 (4 15)>
#<location 10 (-5 14)>

. . .
#<location 50 (5 26)>
#<location 51 (-2 16)>
#<location 52 (2 23)>
#<location 53 (9 33)>
#<location 54 (7 43)>
#<location 55 (-2 36)>
#<location 56 (0 46)>
#<location 57 (2 41)>
#<location 58 (5 31)>
#<location 59 (13 39)>
#<location 60 (17 41)>
#<location 61 (21 50)>
nil
gbbopen-user>

This is a bad idea for several reasons. First, we are looking up every location unit instance by its
instance name, which is less efficient than operating on location instances directly. While this isn’t
an significant issue in expressions that we evaluate in the REPL to investigate our application, we
should seek to avoid such inefficiencies in application code. More importantly, however, the location
instance name just happens to mirror the sequencing that we really want to display: the time value
of the locations. We should find a way to sequence location printing that relies on the time values
directly.

GBBopen provides a variant of map-instances-of-class, called map-sorted-instances-of-class,
that sorts the unit instances based on a comparison predicate and an optional :key accessor function
that suits our needs:

gbbopen-user> (map-sorted-instances-of-class #’print ’location #’<
:key #’time-of)

GBBopen 1.5 Tutorial
10 Add Another KS 67



#<location 1 (0 0)>
#<location 2 (10 4)>
#<location 3 (19 10)>
#<location 4 (14 9)>
#<location 5 (14 18)>
#<location 6 (10 27)>
#<location 7 (3 17)>
#<location 8 (-6 20)>
#<location 9 (4 15)>
#<location 10 (-5 14)>

. . .
#<location 50 (5 26)>
#<location 51 (-2 16)>
#<location 52 (2 23)>
#<location 53 (9 33)>
#<location 54 (7 43)>
#<location 55 (-2 36)>
#<location 56 (0 46)>
#<location 57 (2 41)>
#<location 58 (5 31)>
#<location 59 (13 39)>
#<location 60 (17 41)>
#<location 61 (21 50)>
nil
gbbopen-user>

Using map-sorted-instances-of-class involves a sorting operation, so this approach still has some
efficiency concerns for use in application code. However, it suits our REPL-exploration needs just fine.
(There is a do-sorted-instances-of-class macro, if an iterative style is preferred over a mapper.) We
will explore a more efficient approach to displaying the random walk in the next exercise.

Step 6: Run the application a few more times

If we run the application a few more times, we eventually encounter a case where we create the
allotted 75 location unit instances without walking off the known-world:

gbbopen-user> (start-control-shell)
;; Control shell 1 started

Walked too long.
;; No executable KSAs remain, exiting control shell
;; Control shell 1 exited: 78 cycles completed
;; Run time: 0.04 seconds
;; Elapsed time: 0 seconds
:quiescence
gbbopen-user>

Here is one such random walk:

68
GBBopen 1.5 Tutorial
10 Add Another KS



gbbopen-user> (map-sorted-instances-of-class #’print ’location #’<
:key #’time-of)

#<location 1 (0 0)>
#<location 2 (2 7)>
#<location 3 (-1 5)>
#<location 4 (-1 0)>
#<location 5 (3 -2)>
#<location 6 (13 -7)>
#<location 7 (8 -5)>
#<location 8 (1 2)>
#<location 9 (8 0)>
#<location 10 (5 8)>

. . .
#<location 70 (-13 -11)>
#<location 71 (-13 -6)>
#<location 72 (-9 -6)>
#<location 73 (1 -4)>
#<location 74 (-8 -11)>
#<location 75 (-13 -15)>
nil
gbbopen-user>

69



70



11 Making Connections

We finally did some walking in the last exercise and learned how to display the location unit
instances in our walk from the REPL. In this exercise, we learn how to use GBBopen’s link
capabilities to represent relationships among unit instances. Links are an important aspect of almost
every GBBopen application, so it’s time that we started taking advantage of them.

This exercise shows you how to:

• Add link slots to a unit class
• Use link slots to traverse and display the resulting random walk

Prerequisites

• The tutorial-example.lisp file as modified thus far:

(in-package :gbbopen-user)

(define-unit-class location ()
(time
x y)

(:dimensional-values
(time :point time)
(x :point x)
(y :point y))

(:initial-space-instances (known-world)))

(defmethod print-instance-slots ((location location) stream)
(call-next-method)
(when (and (slot-boundp location ’x)

(slot-boundp location ’y))
(format stream " (~s ~s)"

(x-of location)
(y-of location))))

;;; ====================================================================
;;; Startup KS

(defun startup-ks-function (ksa)
(declare (ignore ksa))
;; Create an initial location unit instance at (0,0):
(make-instance ’location :time 0 :x 0 :y 0))

(define-ks startup-ks
:trigger-events ((control-shell-started-event))
:execution-function ’startup-ks-function)

;;; ====================================================================
;;; Initializations (run at Agenda Shell startup)

GBBopen 1.5 Tutorial
11 Making Connections 71



(defun initializations (event-name &key &allow-other-keys)
(declare (ignore event-name))
;; Clean up any previous run:
(delete-blackboard-repository)
;; Make a new known-world space instance:
(make-space-instance
’(known-world)
:dimensions (dimensions-of ’location)))

(add-event-function ’initializations ’control-shell-started-event
;; Initializations should be done first!
:priority 100)

;;; ====================================================================
;;; Random-walk KS

(defun add-linear-variance (value max-variance)
;;; Returns a new random value in the interval
;;; [(- value max-variance), (+ value max-variance)]
(+ value (- (random (1+ (* max-variance 2))) max-variance)))

(defun random-walk-ks-function (ksa)
;;; Move to the next (random) location in the world
(let* ((trigger-instance (sole-trigger-instance-of ksa))

;; The new time is one greater than the stimulus’s time:
(time (1+ (time-of trigger-instance))))

(cond
;; If the maximum time value (75) is reached, tell the user we’ve
;; walked too long:
((>= time 75) (format t "~2&Walked too long.~%"))
(t ;; The new location is +/- 10 of the stimulus’s location:
(let ((x (add-linear-variance (x-of trigger-instance) 10))

(y (add-linear-variance (y-of trigger-instance) 10)))
(cond
;; Check that the new location is within the known-world
;; boundaries. If so, create the new location instance:
((and (<= -50 x 50) (<= -50 y 50))
(make-instance ’location

:time time
:x x
:y y))

;; Otherwise, tell the user that we’ve walked too far away:
(t (format t "~2&Walked off the world: (~d, ~d).~%" x y))))))))

(define-ks random-walk-ks
:trigger-events ((instance-created-event location))
:rating 100
:execution-function ’random-walk-ks-function)

• The :agenda-shell-user module is loaded

72
GBBopen 1.5 Tutorial

11 Making Connections



Step 1: Add a link

In the last exercise, we used map-sorted-instances-of-class to display the random walk. Another
way that we could represent the walk is by connect each newly created location unit instance to the
location unit instance that preceded it in the walk. We’ll use GBBopen’s link capabilities to do this.

A link is a bidirectional relationship between two unit instances that is implemented by two pointers.
From the perspective of a particular unit instance, each link consists of an outgoing, or direct, pointer
to another unit instance and an incoming, or inverse, pointer that is stored in unit instance pointed to
by the direct pointer. GBBopen automatically maintains the bidirectional-link consistency of these
pointers when creating new links, deleting existing links, or deleting unit instances. Links remove
the possibility of “one-sided” relationships or “dangling” pointers to deleted unit instances.

Edit the location unit-class definition in your tutorial-example.lisp file, adding two link slots,
next-location and previous-location, to the location unit class definition:
(define-unit-class location ()

(time
x y
(next-location
:link (location previous-location :singular t)
:singular t)
(previous-location
:link (location next-location :singular t)
:singular t))

(:dimensional-values
(time :point time)
(x :point x)
(y :point y))

(:initial-space-instances (known-world)))

Each link-slot specification is a list whose first element is the name of the link slot. This is followed by
the link slot option :link and a concise specification of the inverse link slot associated with that link
slot. In this case, the next-location/previous-location link is between instances of the same
(location) unit class, but often links are between instances of different unit classes.

Links can be many-to-many, many-to-one, one-to-many, or one-to-one. In this case, the
next-location/previous-location link is one-to-one, which is specified by including the
:singular t slot option in the link-slot definition (and the corresponding :singular t
specification in the concise inverse-link-slot specification). To help clarify the specification of link slot
arity, let’s temporarily assume that we want a location instance that can have many next locations,
but only a single previous location. This link relation would be specified as follows:

. . .
(next-locations
:link (location previous-location :singular t)))
(previous-location
:link (location next-locations)
:singular t)

. . .

We’ve followed the natural GBBopen convention of giving singular link slots a singular name (such as
previous-location) and link slots that can contain multiple links a plural name (such as
next-locations). Note that the :singular option is associated with the previous-location
link slot as both a slot option in the previous-location link-slot definition and in the concise
inverse-link-slot specification for previous-location in the next-locations link-slot definition.

GBBopen 1.5 Tutorial
11 Making Connections 73



Step 2: Break some links

The concise inverse-link-slot specification supplied by the :link slot option provides a “double entry”
redundancy that is useful when links are between instances of different unit classes, as the link can
be understood by viewing either class definition. The redundancy also helps GBBopen recognize
inconsistencies in link specifications. The function check-link-definitions asks GBBopen to validate
that all link definitions are consistent. Let’s try it on our current random-walk application. Compile
and load the latest changes in your tutorial-example.lisp file (including the new
next-location and previous-location link slots). Then check link consistency:
gbbopen-user> (check-link-definitions)
;; All link definitions are consistent.
t
gbbopen-user>

GBBopen reports that all link definitions are consistent.

Suppose that we had forgotten to add the previous-location end of the link in our location
unit-class definition. Edit the location unit-class definition in your tutorial-example.lisp file,
adding the line #+ignore immediately before the previous-location link-slot definition:

(define-unit-class location ()
(time
x y
(next-location
:link (location previous-location :singular t)
:singular t)
#+ignore
(previous-location
:link (location next-location :singular t)
:singular t))

(:dimensional-values
(time :point time)
(x :point x)
(y :point y))

(:initial-space-instances (known-world)))

The #+ignore read-time conditionalization tells Common Lisp to skip over the next form if ignore
is not an element of the feature list *features*. By convention, ignore is never added to
*features*, so nobr#+ignore is a handy mechanism for temporarily “commenting out” a single
form.

Compile the now-defective definition (using C-c C-c in SLIME or C-c C-x in ELI) and then recheck
link consistency:

gbbopen-user> (check-link-definitions)
Warning: The inverse of link slot next-location in unit class location

refers to link slot previous-location which is not present in
unit class location.

nil
gbbopen-user>

As expected, GBBopen alerts us to the problem.

Remove the #+ignore that we just added and comment out the :singular t portion of the inverse
link-slot specification in next-location:

74
GBBopen 1.5 Tutorial

11 Making Connections



(define-unit-class location ()
(time
x y
(next-location
:link (location previous-location) ; :singular t)
:singular t)
#+ignore
(previous-location
:link (location next-location :singular t)
:singular t))

(:dimensional-values
(time :point time)
(x :point x)
(y :point y))

(:initial-space-instances (known-world)))

Compile the again-defective definition (using C-c C-c in SLIME or C-c C-x in ELI) and then
recheck link consistency:

gbbopen-user> (check-link-definitions)
Warning: Link slot next-location in unit class location incorrectly

declares its inverse link slot previous-location in unit
class location as not singular.

nil
gbbopen-user>

Once again, GBBopen has alerted us to the problem.

Restore the :singular t portion of the inverse link-slot specification in next-location that we
just commented out:

(define-unit-class location ()
(time
x y
(next-location
:link (location previous-location) ; :singular t)
:singular t)
(previous-location
:link (location next-location :singular t)
:singular t))

(:dimensional-values
(time :point time)
(x :point x)
(y :point y))

(:initial-space-instances (known-world)))

Then recompile and recheck link consistency:

gbbopen-user> (check-link-definitions)
;; All link definitions are consistent.
t
gbbopen-user>

GBBopen 1.5 Tutorial
11 Making Connections 75



Step 3: Create some links

Let’s use our newly defined next-location/previous-location link to connect our location
unit instances. Edit the random-walk-ks-function definition in your tutorial-example.lisp
file, adding the trigger instance as a new :previous-location argument to make-instance:

(defun random-walk-ks-function (ksa)
;;; Move to the next (random) location in the world
(let* ((trigger-instance (sole-trigger-instance-of ksa))

;; The new time is one greater than the stimulus’s time:
(time (1+ (time-of trigger-instance))))

(cond
;; If the maximum time value (75) is reached, tell the user we’ve
;; walked too long:
((>= time 75) (format t "~2&Walked too long.~%"))
(t ;; The new location is +/- 10 of the stimulus’s location:
(let ((x (add-linear-variance (x-of trigger-instance) 10))

(y (add-linear-variance (y-of trigger-instance) 10)))
(cond
;; Check that the new location is within the known-world
;; boundaries. If so, create the new location instance:
((and (<= -50 x 50) (<= -50 y 50))
(make-instance ’location

:time time
:x x
:y y
:previous-location trigger-instance))

;; Otherwise, tell the user that we’ve walked too far away:
(t (format t "~2&Walked off the world: (~d, ~d).~%" x y))))))))

Compile the random-walk-ks-function (using C-c C-c in SLIME or C-c C-x in ELI) and then
run the application:

gbbopen-user> (start-control-shell)
;; Control shell 1 started

Walked off the world: (55, 35).
;; No executable KSAs remain, exiting control shell
;; Control shell 1 exited: 66 cycles completed
;; Run time: 0.01 seconds
;; Elapsed time: 0 seconds
:quiescence
gbbopen-user>

Let’s describe a couple of location unit instances to check our work. First, the initial location unit
instance:

gbbopen-user> (describe-instance (find-instance-by-name 1 ’location))
Location #<location 1 (0 0)>

Instance name: 1
Space instances: ((known-world))
Dimensional values:

time: 0
x: 40

76
GBBopen 1.5 Tutorial

11 Making Connections



y: 60
Non-link slots:

time: 0
x: 40
y: 60

Link slots:
next-location: #<location 2 (-10 10)>
previous-location: nil

gbbopen-user>

Note that the next-location link slot points to the next location unit instance in our random
walk. Let’s describe that unit instance:

gbbopen-user> (describe-instance (find-instance-by-name 2 ’location))
Location #<location 2 (-10 10)>

Instance name: 2
Space instances: ((known-world))
Dimensional values:

time: 1
x: -10
y: 10

Non-link slots:
time: 1
x: -10
y: 10

Link slots:
next-location: #<location 3 (-6 19)>
previous-location: #<location 1 (0 0)>

gbbopen-user>

The next-location link slot in location 2 points to the third location unit instance in our
random walk and its previous-location link slot points back to the initial location unit
instance.

We can now follow the links to display the random walk:

gbbopen-user> (loop with location = (find-instance-by-name 1 ’location)
do (print location)
while (setf location (next-location-of location)))

#<location 1 (0 0)>
#<location 2 (-10 10)>
#<location 3 (-6 19)>
#<location 4 (0 14)>
#<location 5 (-1 14)>
#<location 6 (8 10)>
#<location 7 (17 3)>
#<location 8 (7 -6)>
#<location 9 (10 4)>
#<location 10 (5 -5)>

. . .
#<location 60 (29 17)>
#<location 61 (31 21)>
#<location 62 (40 23)>

GBBopen 1.5 Tutorial
11 Making Connections 77



#<location 63 (45 28)>
nil
gbbopen-user>

Step 4: Define a “print walk” KS

Let’s add a new KS, print-walk-ks, that displays the random walk once it is completed. Add the
following KS to the end of your tutorial-example.lisp file:
;;; ====================================================================
;;; Print-walk KS

(defun print-walk-ks-function (ksa)
;;; Starting with the initial location instance, print the instance
;;; name and location of the walk
(declare (ignore ksa))
(format t "~2&The random walk:~%")
(let ((instance (find-instance-by-name 1 ’location)))

(while instance
(format t "~s (~s ~s)~%"

(instance-name-of instance)
(x-of instance)
(y-of instance))

(setf instance (next-location-of instance))))
;; Tell the Agenda Shell to exit:
’:stop)

(define-ks print-walk-ks
:trigger-events ((quiescence-event))
:rating 100
:execution-function ’print-walk-ks-function)

The print-walk-ks is triggered by a quiescence-event. Recall that the Agenda Shell signals
that quiescence has occurred when no executable KSAs are available to be executed and then it
continues for an additional KS-execution cycle in case any executable KSAs resulted from the
quiescence event. So, print-walk-ks will be triggered once no random-walk-ks KSAs are
triggered by newly created location unit instances.

The print-walk-ks-function follows the next-location/previous-location link to display
the walk. More importantly, the function returns the keyword symbol :stop. The Agenda Shell
checks the value returned by a KS execution function for this special indicator and, if it is returned,
the control shell is exited. If we did not return :stop, the print-walk-ks KS would be triggered
and activated on the first quiescence-event, the KSA would execute, then the Agenda Shell would
detect another quiescence condition, signal a new quiescence-event, and our application would
print the random walk over and over again.

Let’s compile our latest changes and then run our application with the new print-walk-ks KS in
place:

gbbopen-user> (start-control-shell)
;; Control shell 1 started

Walked off the world: (54, 15).

78
GBBopen 1.5 Tutorial

11 Making Connections



The random walk:
1 (0 0)
2 (-6 9)
3 (-14 8)
4 (-5 6)
5 (-13 5)
6 (-11 13)
7 (-11 4)
8 (-17 8)
9 (-21 15)
10 (-12 14)

. . .
35 (40 28)
36 (50 22)
37 (49 12)
38 (47 10)
;; Explicit :stop issued by KS print-walk-ks
;; Control shell 1 exited: 41 cycles completed
;; Run time: 0.01 seconds
;; Elapsed time: 0 seconds
:stop
gbbopen-user>

79



80



12 Creating a GBBopen Application

GBBopen’s Module Manager Facility provides mechanisms that make it easy to define and use your
own GBBopen applications.

This exercise shows you how to:

• Structure an application using the Module Manager Facility
• Define a REPL command for your application
• Compile and load your application using your REPL command
• Create and use an application-specific package
• Add an “autorun” action

Prerequisites

• The tutorial-example.lisp file as modified thus far:
(in-package :gbbopen-user)

(define-unit-class location ()
(time
x y
(next-location
:link (location previous-location :singular t)
:singular t)
(previous-location
:link (location next-location :singular t)
:singular t))

(:dimensional-values
(time :point time)
(x :point x)
(y :point y))

(:initial-space-instances (known-world)))

(defmethod print-instance-slots ((location location) stream)
(call-next-method)
(when (and (slot-boundp location ’x)

(slot-boundp location ’y))
(format stream " (~s ~s)"

(x-of location)
(y-of location))))

;;; ====================================================================
;;; Startup KS

(defun startup-ks-function (ksa)
(declare (ignore ksa))
;; Create an initial location unit instance at (0,0):
(make-instance ’location :time 0 :x 0 :y 0))

GBBopen 1.5 Tutorial
12 Creating a GBBopen Application 81



(define-ks startup-ks
:trigger-events ((control-shell-started-event))
:execution-function ’startup-ks-function)

;;; ====================================================================
;;; Initializations (run at Agenda Shell startup)

(defun initializations (event-name &key &allow-other-keys)
(declare (ignore event-name))
;; Clean up any previous run:
(delete-blackboard-repository)
;; Make a new known-world space instance:
(make-space-instance
’(known-world)
:dimensions (dimensions-of ’location)))

(add-event-function ’initializations ’control-shell-started-event
;; Initializations should be done first!
:priority 100)

;;; ====================================================================
;;; Random-walk KS

(defun add-linear-variance (value max-variance)
;;; Returns a new random value in the interval
;;; [(- value max-variance), (+ value max-variance)]
(+ value (- (random (1+ (* max-variance 2))) max-variance)))

(defun random-walk-ks-function (ksa)
;;; Move to the next (random) location in the world
(let* ((trigger-instance (sole-trigger-instance-of ksa))

;; The new time is one greater than the stimulus’s time:
(time (1+ (time-of trigger-instance))))

(cond
;; If the maximum time value (75) is reached, tell the user we’ve
;; walked too long:
((>= time 75) (format t "~2&Walked too long.~%"))
(t ;; The new location is +/- 10 of the stimulus’s location:
(let ((x (add-linear-variance (x-of trigger-instance) 10))

(y (add-linear-variance (y-of trigger-instance) 10)))
(cond
;; Check that the new location is within the known-world
;; boundaries. If so, create the new location instance:
((and (<= -50 x 50) (<= -50 y 50))
(make-instance ’location

:time time
:x x
:y y
:previous-location trigger-instance))

;; Otherwise, tell the user that we’ve walked too far away:
(t (format t "~2&Walked off the world: (~d, ~d).~%" x y))))))))

82
GBBopen 1.5 Tutorial

12 Creating a GBBopen Application



(define-ks random-walk-ks
:trigger-events ((instance-created-event location))
:rating 100
:execution-function ’random-walk-ks-function)

;;; ====================================================================
;;; Print-walk KS

(defun print-walk-ks-function (ksa)
;;; Starting with the initial location instance, print the instance
;;; name and location of the walk
(declare (ignore ksa))
(format t "~2&The random walk:~%")
(let ((instance (find-instance-by-name 1 ’location)))

(while instance
(format t "~s (~s ~s)~%"

(instance-name-of instance)
(x-of instance)
(y-of instance))

(setf instance (next-location-of instance))))
;; Tell the Agenda Shell to exit:
’:stop)

(define-ks print-walk-ks
:trigger-events ((quiescence-event))
:rating 100
:execution-function ’print-walk-ks-function)

• The GBBopen environment setup using <install-dir>/initiate.lisp as described in
Steps 1 and 2 of the Enhancing Your Development Environment exercise (see page 33)

Step 1: Create your personal gbbopen-modules directory

Create a directory named gbbopen-modules in your “homedir” directory (see page 35). For example:

[~]$ mkdir gbbopen-modules
[~]$

This is a special directory that is read by used by GBBopen to find applications when GBBopen is
started using <install-dir>/initiate.lisp, as described in Steps 1 and 2 of the Enhancing
Your Development Environment exercise (see page 33).

Step 2: Create a module-definition file for the random-walk application

Recall that you created a directory to hold the random-walk application in Step 1 of Working Within a
File exercise (see page 37). I used these shell commands to create my directories:

[~]$ mkdir tutorial
[~]$ cd tutorial
[~/tutorial]$ mkdir source
[~/tutorial]$

GBBopen 1.5 Tutorial
12 Creating a GBBopen Application 83



Then you created the tutorial-example.lisp file in this source subdirectory. We said that we
would explain why we created the source directory in a later exercise. Well, later has arrived.

Each GBBopen application is packaged in a directory that contains:

• a modules.lisp file that contains module definitions (loaded after the personal
codegbbopen-init.lisp file if there is one in the user’s “homedir”)

• a directory named source containing all the source files for the module or application
• an optional commands.lisp file that specifies REPL commands for the module (loaded after the

personal gbbopen-commands.lisp file if there is one in the user’s “homedir”)
• any additional directories or files useful to the application

You already have the source directory and the tutorial-example.lisp source file. Next, we
create the modules.lisp file for the application. (We will create a commands.lisp file for the
random-walk application in Step 5.)

Use your Common Lisp editor to create a new file named modules.lisp in the tutorial directory
(just as you created the tutorial-example.lisp file in Step 2 of Working Within a File exercise
(see page 37). Note that this file is not in the source subdirectory, but in the tutorial directory that
contains the source subdirectory.

Type the following two forms into the new modules.lisp file:
(in-package :module-manager-user)

(define-module :tutorial
(:requires :agenda-shell-user)
(:files "tutorial-example"))

and then save the file.

Recall that the in-package form specifies the Common Lisp package that is made current when the
file is compiled or loaded. A modules.lisp file should always specify the :module-manager-user
package as the first form in the file.

The second form defines our application module, which we will name :tutorial. The :requires
subform specifies that the :agenda-shell-user module must be compiled (if necessary) and then
loaded before our :tutorial module. The :files subform specified the files that comprise the
module. In our case, there is one file: tutorial-example.lisp. We leave off the .lisp file
extension, as the Module Manager will add the appropriate source or compiled file extension for us.

Step 3: Add the random-walk application to your personal
gbbopen-modules directory

The gbbopen-modules directory in your “homedir” is expected to consist of directories each
containing an individual GBBopen application. We could place the random-walk application directly
in the gbbopen-modules directory by moving the tutorial directory there. However, it is generally
more convenient to use a symbolic link to point to the actual application directory. For example, an
application can be provided to a number of users by creating a symbolic link to the application
directory in each user’s gbbopen-modules directory.

Unless you are running Windows, add the random-walk application to your gbbopen-applications
by creating a symbolic link. For example:

[~]$ cd ~/gbbopen-modules/
[~/gbbopen-modules]$ ln -s ~/tutorial .
[~/gbbopen-modules]$

84
GBBopen 1.5 Tutorial

12 Creating a GBBopen Application



Windows users

Instead of creating a symbolic link, GBBopen also supports a special “pseudo symbolic-link” file that
can be used with Windows. This is simply a text file with the file extension .sym that contains the
target directory path as the sole line in the file. For example, you could create the file tutorial.sym
in your gbbopen-modules directory with:

C:\tutorial\
as the sole line in the file.

Step 4: Try the :tutorial module definition

Let’s try out our module definition. Exit Common Lisp and start a fresh Common Lisp session. If you
have set up your environment according to the Enhancing Your Development Environment exercise
(see page 33), the following files should be loaded:

. . .
;; Loading <homedir>/shared-init.lisp
;; Loading <install-dir>/initiate.lisp
;; GBBopen is installed in <install-dir>
;; Your "home" directory is <homedir>
;; Loading <install-dir>/extended-repl.lisp
;; Loading <install-dir>/commands.lisp
;; Loading <install-dir>/gbbopen-modules-directory.lisp
;; No shared module command definitions were found in <install-dir>/gbbopen-modules/.
;; No personal module command definitions were found in <homedir>/gbbopen-modules/.

cl-user>

Note that some basic GBBopen initialization files have been loaded for us as well as GBBopen’s
command definitions and any command definitions for applications linked from our
<homedir>/gbbopen-modules/ directory. No module definitions have been defined yet, and
GBBopen itself (or even the Module Manager Facility) were not loaded by
<install-dir>/initiate.lisp.

Now, instead of loading the :agenda-shell-user module, let’s load only the
:module-manager-user module:

cl-user> :module-manager-user
;; Loading <install-dir>/startup.lisp

. . .
;; Loading <install-dir>/<platform-dir>/module-manager/module-manager-user.fasl
;; Loading <install-dir>/modules.lisp
;; No shared module definitions were found in <install-dir>/gbbopen-modules/.
;; Loading personal module definitions from <homedir>/gbbopen-modules/...
;; Loading <homedir>/tutorial/modules.lisp
module-manager-user>

Note that when the Module Manager was loaded as part of loading the :module-manager-user
module, the module definitions for our personal GBBopen modules were loaded automatically. (In this
case, the <homedir>/tutorial/modules.lisp file.)

Now that we have defined our :tutorial module, we can use the compile-module REPL command,
:cm, to compile (if needed) and load it. Before doing so, however, let’s explore what is happening when
:tutorial is being compiled by instructing the Module Manager not to create new compiled-file
directories automatically (its default behavior). Enter the following in the REPL:

GBBopen 1.5 Tutorial
12 Creating a GBBopen Application 85



module-manager-user> (setf *automatically-create-missing-directories* nil)
nil
module-manager-user>>

Now compile and load the :tutorial module:
module-manager-user> :cm :tutorial
;; Loading <install-dir>/<platform-dir>/tools/preamble.fasl

. . .
;; Loading .../gbbopen/control-shells/agenda-shell-user.fasl

Error: Directory <homedir>/tutorial/<platform-dir>/
in module :tutorial does not exist.

Restart actions (select using :c n):
0: Create this directory.
1: Create this directory and any future missing directories.

module-manager-user>>

The :requires in our :tutorial module definition causes the :agenda-shell-user module (and
before that, all its required modules) to be loaded for us. Then the Module Manager signals a
continuable error, telling us that the directory to hold the compiled application files for :tutorial
does not exist. Compiled files are put in a Common Lisp and platform-specific subdirectory,
<platform-dir>, in our tutorial directory that mirrors the source directory. This organization
makes it easy to use the application with a number of Common Lisp implementations and on a file
system shared with a number of different hosts and operating systems.

By default, the Module Manager would have created the missing <homedir> /tutorial/<platform-dir> /
directory for us automatically (and continued compiling our :tutorial module), but we disabled
automatic directory creation by setting /textbf*automatically-create-missing-directories* to nil. We
still could have avoided this continuable error by providing the :create-dirs option to the :cm
command:

module-manager-user> :cm :tutorial :create-dirs

to allow the Module Manager to create the <platform-dir> subdirectory automatically for us. Since
we did not do this, we can still continue from the error:

Restart actions (select using :c n):
0: Create this directory.
1: Create this directory and any future missing directories.

module-manager-user>> :c 0
;; Compiling file <homedir>/tutorial/source/tutorial-example.lisp
;; Loading <homedir>/tutorial/<platform-dir>/tutorial-example.fasl
module-manager-user>

At this point, we’ve compiled and loaded our :tutorial application module.

Step 5: Create a command-definition file for the random-walk application

It is convenient to define a REPL command to compile and load you application (and any required
GBBopen modules).

Use your Common Lisp editor to create a new file named commands.lisp in the tutorial directory.
Type the following two forms into the new commands.lisp file:

86
GBBopen 1.5 Tutorial

12 Creating a GBBopen Application



(in-package :common-lisp-user)

(define-repl-command :tutorial (&rest options)
"Compile and load the Random-Walk Tutorial Application Module"
(startup-module :tutorial options :gbbopen-user))

and then save the file. A commands.lisp file should always specify the :common-lisp-user
package as the first form in the file.

The define-repl-command form adds a REPL command, named :tutorial, to the set of handy
REPL commands. The startup-module call does all the work associated with executing the
command. The first argument to startup-module specifies that the :tutorial module will be
compiled (if necessary) and then loaded by the Module Manager when the :tutorial command is
issued. The second, options, argument passes any options given with the command to a
compile-module call that is performed by startup-module. The third argument, :gbbopen-user
is optional and specifies that the REPL’s current package should be changed to :gbbopen-user after
the :tutorial module is loaded.

Step 6: Try the :tutorial command

Let’s try our command definition. Exit Common Lisp and start a fresh Common Lisp session. If you
have set up your environment according to the Enhancing Your Development Environment exercise
(see page 33), the following files should be loaded:

. . .
;; Loading <homedir>/shared-init.lisp
;; Loading <install-dir>/initiate.lisp
;; GBBopen is installed in <install-dir>
;; Your "home" directory is <homedir>
;; Loading <install-dir>/extended-repl.lisp
;; Loading <install-dir>/commands.lisp
;; Loading <install-dir>/gbbopen-modules-directory.lisp
;; No shared module command definitions were found in <install-dir>/gbbopen-modules/.
;; Loading personal module command definitions from <homedir>/gbbopen-modules/...
;; Loading <homedir>/gbbopen-modules/tutorial/commands.lisp
cl-user>

Note that the commands.lisp file from the tutorial directory has been loaded by
<install-dir>/initiate.lisp.

Now, we can compile and load the :tutorial module by simply issuing the :tutorial REPL
command:

cl-user> :tutorial
;; Loading <install-dir>/startup.lisp

. . .
;; Loading <homedir>/tutorial/<platform-dir>/tutorial-example.fasl
gbbopen-user>

With the command definition in place, we are able to compile and load our random-walk application
by issuing a single command, :tutorial.

Note a potential continuable error due to a missing <platform-dir> subdirectory can always be
avoided by providing the :create-dirs option to the :tutorial command:

gbbopen-user> :tutorial :create-dirs

GBBopen 1.5 Tutorial
12 Creating a GBBopen Application 87



to allow the Module Manager to create the <platform-dir> subdirectory automatically for us.
However, since we created <platform-dir> in Step 4, we did not need to specify the :create-dirs
option again in this step.

Step 7: Controlling automatic creation of missing subdirectories

If you prefer, you can specify that the Module Manager not create missing <platform-dir>
directories and subdirectories automatically but, instead, signal an continuable error if a directory is
missing (and the :create-dirs compile-module option was not specified). As we have seen, this
behavior is controlled by the value of the symbol *automatically-create-missing-directories*,
which is in the :common-lisp-user package and is set to t by default. If you would like to turn-off
automatic directory creation by the Module Manager, add the following form to your
shared-init.lisp file (in your “homedir” directory):

(defparameter *automatically-create-missing-directories* nil)

I prefer to have the Module Manager generate the continuable error if it needs to create a
<platform-dir> directory and I didn’t specify :create-dirs when compiling a new module, so I
set *automatically-create-missing-directories* to t in my shared-init.lisp file.

Step 8: Create and use an application-specific package

We have been developing our random-walk application in GBBopen’s :gbbopen-user package. The
:gbbopen-user package is convenient, and we could continue using it. However, if we develop
multiple GBBopen applications in the :gbbopen-user package and load several of them at the same
time, symbol-name clashes could occur.

To eliminate this possibility, we can create our own package for the random-walk application. First,
let’s determine what packages are being used by GBBopen’s :gbbopen-user package. Evaluate the
following:

gbbopen-user> (package-use-list :gbbopen-user)
(#<package PORTABLE-THREADS> #<package AGENDA-SHELL>
#<package MODULE-MANAGER> #<package COMMON-LISP>
#<package GBBOPEN-TOOLS> #<package GBBOPEN>)

gbbopen-user>

Change tutorial-example.lisp

We want our new :tutorial package to use the same packages that the :agenda-shell-user
package used. Edit your tutorial-example.lisp file and replace the :gbbopen-user package
specification:

(in-package :gbbopen-user)

with the following:
(eval-when (:compile-toplevel :load-toplevel :execute)

(unless (find-package :tutorial)
(defpackage :tutorial

(:use :common-lisp :module-manager :gbbopen-tools :gbbopen
:portable-threads :agenda-shell))))

(in-package :tutorial)

88
GBBopen 1.5 Tutorial

12 Creating a GBBopen Application



and save the file.

Note the use of eval-when in the first form above. Normally, top-level forms in a file are not
evaluated at compile time. In this case, however, we want to define the :tutorial package when
needed, whether the file is being compiled or loaded. The eval-when special operator with the three
situations (:compile-toplevel, :load-toplevel, and :execute) provides this behavior to the
forms that it contains. Such eval-when forms are a standard Common Lisp idiom for compile-time
and load-time evaluation.

An application feature

In my applications, I also add a feature to Common Lisp’s *features* list to indicate that the
application has been fully loaded. To do this, add the following at the end of your
tutorial-example.lisp file:
(pushnew :tutorial *features*)

and save the file.

Change commands.lisp

Next, edit your commands.lisp file and delete the :gbbopen-user package-name argument to
startup-module:

(define-repl-command :tutorial (&rest options)
"Compile and load the Random-Walk Tutorial Application Module"
(startup-module :tutorial options :gbbopen-user))

and add the package-name :tutorial in its place:
(define-repl-command :tutorial (&rest options)

"Compile and load the Random-Walk Tutorial Application Module"
(startup-module :tutorial options :tutorial))

Save the file.

Change modules.lisp

Finally, we no longer need the :gbbopen-user package that is created by requiring the
:agenda-shell-user module. Let’s take a closer look at the :tutorial module that we defined:

gbbopen-user> (describe-module :tutorial)
Module :tutorial (loaded)

Requires: (:agenda-shell-user)
Fully expanded requires: (:module-manager :module-manager-user

:portable-threads
:gbbopen-tools :gbbopen-core :polling-functions
:queue :agenda-shell :os-interface :gbbopen-user
:agenda-shell-user)

Source directory: <homedir>/tutorial/source/
Compiled directory: <homedir>/<platform-dir>/
Forces recompile date: None
Files: Mar 24 06:02 tutorial-example

gbbopen-user>

GBBopen 1.5 Tutorial
12 Creating a GBBopen Application 89



Although we only specified that the :agenda-shell-user module was required, our :tutorial
module implicitly requires a number of packages that are required by the :agenda-shell-user
module and its implicitly required packages. These are shown as the “Fully expanded requires” value.

If we look at the details of the :agenda-shell-user module we see:

gbbopen-user> (describe-module :agenda-shell-user)
Module :agenda-shell-user (loaded)

Requires: (:agenda-shell :gbbopen-user)
Fully expanded requires: (:module-manager :module-manager-user

:portable-threads
:gbbopen-tools :gbbopen-core :polling-functions
:queue :agenda-shell :os-interface

:gbbopen-user)
Source directory: <install-dir>/source/gbbopen/control-shells/
Compiled directory: <install-dir>/<platform-dir>/gbbopen/control-shells/
Forces recompile date: None
Files: Mar 23 12:27 agenda-shell-user

gbbopen-user>

Note that the :agenda-shell-user module requires two modules: :agenda-shell and
:gbbopen-user. We can eliminate the loading of the :gbbopen-user module by editing our
modules.lisp file and delete :agenda-shell-user in the :requires option in our :tutorial
module definition:

(in-package :module-manager-user)

(define-module :tutorial
(:requires :agenda-shell-user)
(:files "tutorial-example"))

and replace it with :agenda-shell:

(in-package :module-manager-user)

(define-module :tutorial
(:requires :agenda-shell)
(:files "tutorial-example"))

Save the file.

Step 9: Verify your changes

Let’s make sure that everything is still working. Exit Common Lisp and start a fresh Common Lisp
session. Next enter the :tutorial REPL command:

cl-user> :tutorial
;; Loading <install-dir>/startup.lisp

. . .
;; Loading <homedir>/tutorial/<platform-dir>/tutorial-example.fasl
tutorial>

Note that we are now in our newly defined :tutorial package. We should still be able to run the
random-walk application:

90
GBBopen 1.5 Tutorial

12 Creating a GBBopen Application



tutorial> (start-control-shell)
;; Control shell 1 started

Walked off the world: (56, 38).

The random walk:
1 (0 0)
2 (-1 -1)
3 (-8 -10)
4 (0 -2)
5 (-5 2)
6 (3 11)
7 (8 5)
8 (12 2)
9 (3 12)
10 (10 4)

. . .
55 (50 40)
56 (42 47)
57 (47 41)
;; Explicit :stop issued by KS print-walk-ks
;; Control shell 1 exited: 60 cycles completed
;; Run time: 0.01 seconds
;; Elapsed time: 0 seconds
:stop
gbbopen-user>

Installation-wide sharing

GBBopen also has an <install-directory>/shared-gbbopen-modules directory. As with our
personal gbbopen-modules directory, this shared-gbbopen-modules directory is assumed to
contain symbolic links (or “pseudo-symbolic-link” files on Windows) to individual GBBopen module
directory trees.

This is the recommended mechanism for installation-wide managing and sharing of modules and
applications, and if we wanted to share our random-walk application to everyone using our GBBopen
installation, we could create our symbolic link (or “pseudo-symbolic-link” file) in the
shared-gbbopen-modules directory.

Step 10: Add an “autorun” action

Suppose we want the random-walk application to run automatically when it is loaded. You could
simply add:

(start-control-shell)

as a top-level form at the end of your tutorial-example.lisp file. The problem with this is that
sometimes you may want to compile and load the application without running it.

GBBopen’s Module Manager Facility supports a convention that makes it easy to conditionalize
load-time action execution via the value of *autorun-modules*. Normally, *autorun-modules* will
be true, but it can be set to nil when a module is loaded with the :noautorun option.

GBBopen 1.5 Tutorial
12 Creating a GBBopen Application 91



Add the following at the end of your tutorial-example.lisp file:

(when *autorun-modules*
(format t "~{~&~s~%~}" (multiple-value-list (start-control-shell))))

and save the file. We could have simply called start-control-shell when *autorun-modules* is
true, but then we would not be able to see what values are returned by the Agenda Shell. The format
form above prints each returned value on a separate output line.

By convention, the “autorun” form is placed at the very end of the file, immediately after the form to
add :tutorial to Common Lisp’s *features*. This is so that the :tutorial feature will be
present during the “autorun” execution and thereafter—even if an error occurs when executing the
“autorun” form.

Step 11: Try it out

Enter the :tutorial REPL command. The modified tutorial-example.lisp file should compile
and load, followed by a random walk:

tutorial> :tutorial
;; Compiling <homedir>/tutorial/source/tutorial-example.lisp
;; Loading <homedir>/tutorial/<platform-dir>/tutorial-example.fasl
;; Control shell 1 started

Walked off the world: (11, -51).

The random walk:
1 (0 0)
2 (6 7)
3 (6 3)
4 (3 -4)
5 (10 -13)

. . .
21 (-5 -46)
22 (-9 -39)
23 (1 -33)
24 (8 -41)
;; Explicit :stop issued by KS print-walk-ks
;; Control shell 1 exited: 27 cycles completed
;; Run time: 0.01 seconds
;; Elapsed time: 0 seconds
:stop
tutorial>

Let’s try it again:
tutorial> :tutorial
tutorial>

This time, nothing happened. Why?

Since no source files were modified, the Module Manager knows that the latest compiled files for the
:tutorial module and its required modules have all been loaded. So, because the
tutorial-example file is not loaded, its “autorun” conditional form is not evaluated.

We can tell the Module Manager to always reload the tutorial-example file by editing our
modules.lisp file and adding the :reload file option to the :tutorial module definition:

92
GBBopen 1.5 Tutorial

12 Creating a GBBopen Application



(define-module :tutorial
(:requires :agenda-shell)
(:files ("tutorial-example" :reload)))

Note that once a file has one or more options, the file name and its options are enclosed in
parentheses.

Save the modified modules.lisp file. Now, if you try the :tutorial command, the
tutorial-example file will always be loaded and its “autorun” form evaluated:

tutorial> :tutorial
;; Loading <homedir>/tutorial/modules.lisp
;; Loading <homedir>/tutorial/<platform-dir>/tutorial-example.fasl
;; Control shell 1 started

. . .
tutorial>

The Module Manager noticed our updated modules.lisp file and loaded it, redefining the
:tutorial module definition, and then followed our :reload specification.

Let’s try the :tutorial command one more time, just to be certain that :reload is happening when
no files have been updated:

tutorial> :tutorial
;; Loading <homedir>/tutorial/<platform-dir>/tutorial-example.fasl
;; Control shell 1 started

. . .
tutorial>

Module Manager propagation

The Module Manager’s compile-module function also accepts a :reload option, so we might be
tempted to simply add that option when we specify our :tutorial command:

tutorial> :tutorial :reload
;; Loading <install-dir>/<platform-dir>/module-manager/module-manager.fasl
;; Loading
<install-dir>/<platform-dir>/module-manager/module-manager-user.fasl

. . .
;; Control shell 1 started

. . .
tutorial>

however, this would also reload all the files of very module required by the :tutorial module, as the
startup-module function that we used in defining our :tutorial REPL command always adds a
:propagate option to the options that we provide to the command. We could override (cancel) this
propagation behavior by adding the :nopropagate option when we specify our :tutorial
command:

tutorial> :tutorial :reload :nopropagate
;; Loading <homedir>/tutorial/<platform-dir>/tutorial-example.fasl
;; Control shell 1 started

. . .
tutorial>

GBBopen 1.5 Tutorial
12 Creating a GBBopen Application 93



which would eliminate reloading of all but the files in the :tutorial module. Since we only have one
file (at the moment) specified in our :tutorial module definition, this behavior is equivalent, but
less convenient, than specifying the :reload file option to our tutorial-example file in the module
definition. If we had a number of files, however, we would probably only want the last one reloaded
every time.

Module Manager memories

The Module Manager also remembers the last module (and any provided options, such as
:create-dirs) that was specified to a :cm (textbfcompile-module) or :lm (load-module) command.
The startup-module function that we used in defining our :tutorial REPL command performs an
implicit :cm command for us, so we could have alternatively typed the :cm REPL command rather
than :tutorial once we have issued the first :tutorial REPL command:

tutorial> :cm
;; :cm :tutorial :propagate
;; Loading <homedir>/tutorial/<platform-dir>/tutorial-example.fasl
;; Control shell 1 started

. . .
tutorial>

Just the thing for lazy typists like me! Note that the :cm command echos the full (implicitly
completed) command with the remembered module name and any remembered options.

Step 12: Add a second source file

Reloading the entire tutorial-application file in order to evaluate our “autorun” form is still a
bit heavy handed. There are two ways to improve this situation, and both involve placing the
“autorun” form in a separate file. Use your Common Lisp editor to create a new file named
autorun.lisp in the source subdirectory of the tutorial directory. Type (or copy) the following
two forms into the new autorun.lisp file:

(in-package :tutorial)

(when *autorun-modules*
(format t "~{~&~s~%~}" (multiple-value-list (start-control-shell))))

and save the file.

Next, edit the tutorial-example.lisp file and remove the “autorun” form from the end of the file:

(when *autorun-modules*
(format t "~{~&~s~%~}" (multiple-value-list (start-control-shell))))

Save the file.

We could define a second random-walk application module, say :run-tutorial, in our
modules.lisp file that contains the new autorun.lisp file and requires our current :tutorial
module. This definition would look like:

(define-module :run-tutorial
(:requires :tutorial
(:files ("autorun" :reload))))

94
GBBopen 1.5 Tutorial

12 Creating a GBBopen Application



However, we can avoid creating a new module by simply adding the autorun file to our current
:tutorial module definition.

Edit the modules.lisp file in the tutorial directory and remove the :reload file option from the
:tutorial-example file specification:

(define-module :tutorial
(:requires :agenda-shell)
(:files ("tutorial-example" :reload)))

and then add a new line for the autorun file with the :reload file option:

(define-module :tutorial
(:requires :agenda-shell)
(:files "tutorial-example"

("autorun" :reload)))

and save the file.

Step 13: One last check

Let’s double-check that everything is working:

tutorial> :cm
;; :cm :tutorial :propagate
;; Loading <homedir>/tutorial/modules.lisp
;; Compiling <homedir>/tutorial/source/tutorial-example.lisp
;; Loading <homedir>/tutorial/<platform-dir>/tutorial-example.fasl
;; Compiling <homedir>/tutorial/source/autorun.lisp
;; Loading <homedir>/tutorial/<platform-dir>/autorun.fasl
;; Control shell 1 started

. . .
tutorial>

The modified files are compiled and loaded and the Agenda Shell is invoked.

Let’s try it one last time, just to be sure that the application runs when no files have been modified:

tutorial> :cm
;; :cm :tutorial :propagate
;; Loading <homedir>/tutorial/<platform-dir>/autorun.fasl
;; Control shell 1 started

. . .
tutorial>

Congratulations! It’s time to move to the next exercise.

95



96



13 Multiple Walkers

Coming later . . .

Please continue with the next exercise.

GBBopen 1.5 Tutorial
13 Multiple Walkers 97



98



14 A Dimensional Detour

Coming later, exploration of unbound dimensional values, intersection of unit instance, space
instance, and retrieval dimensionality, . . .

Please continue with the next exercise.

GBBopen 1.5 Tutorial
14 A Dimensional Detour 99



100



15 More to come. . .

Additional exercises will be added soon.

GBBopen 1.5 Tutorial
15 More to come. . . 101



102



16 The Completed Application

The complete, finished code for the random walk application is in the tutorial.lisp file in the
source/gbbopen/examples/ directory in the GBBopen distribution and at
http://gbbopen.org/svn/GBBopen/trunk/source/gbbopen/examples/tutorial.lisp.

GBBopen 1.5 Tutorial
16 The Completed Application 103

http://gbbopen.org/svn/GBBopen/trunk/source/gbbopen/examples/tutorial.lisp


104



Index

Page references are shown in bold when they refer to
the definition or main source of information on the
entry. A page reference that is given in green italics
indicates an instructive example of the use of that
entity.

(setf x-of) slot writer method, 17
(setf x-of), 17
*automatically-create-missing-directories*, 88
*print-case*, 6
:cm REPL command, 85
:compile-gbbopen, 12
:dsbb REPL command, 43, 43, 50, 65
:stop, 78

acknowledgments, iv
add-instance-to-space-instance, 21, 22, 28, 30, 41,

42
applying a function to all instances of a class, 26

blackboard repository, describing, 20
browse-hyperdoc, 36
browse-hyperdoc.el, 35

children-of, 29
clbuild, 4, 9, 10, 15, 19, 25
Common Lisp

debugger, 7
installing, 3
REPL, see REPL

compile-gbbopen, 12
compile-module, 15, 19, 25
compiling

all of GBBopen, 12

define-ks, 48, 65, 78
define-repl-command, 86
define-unit-class, 15, 42
defparameter, 19, 25, 40, 43
defvar, 16, 20
delete-blackboard-repository, 31, 38, 52
delete-instance, 27, 31
delete-space-instance, 31, 41
describe-blackboard-repository, 20, 21, 22, 29–31,

41
describe-instance, 16, 17, 21, 40, 44, 63
describe-module, 89
describe-space-instance, 42, 59
do-instances-on-space-instances, 31
do-sorted-instances-of-class, 68
dotimes, 26

errors
file protection, 12
recovering from, 7

find-instance-by-name, 17, 22, 26, 27, 30, 63, 78
find-instances, 22, 22, 23, 26, 44–46
find-space-instance-by-path, 21

GBBopen
Forum, 5
installing, 3
updating, 4

in-package, 12, 15, 19, 25
installing GBBopen, 3
instance-deleted-p, 28
instance-name-of, 16, 28

knowledge-source activation, 48
knowledge source, 48
KS, see knowledge source
KSA, see knowledge-source activation

make-instance, 16, 22, 26, 32, 40, 43
make-space-instance, 20, 29, 41, 58
map-instances-of-class, 26, 26, 27, 31, 66
map-instances-on-space-instances, 31
map-sorted-instances-of-class, 67, 68

original-class-of, 28

package, 12
parent-of, 29
print, 25–27
print-instance-slot-value, 45
print-instance-slots, 44
printv, 64

Quicklisp, 5, 9, 10, 15, 19, 25
quiescence, 48
quiescence-event, 48, 78

read-eval-print loop, see REPL
remove-instance-from-space-instance, 23
REPL, 5
REPL command

:cm, 85
:dsbb, 43, 43, 50, 65

shared-gbbopen-modules, installation-wide
application sharing, 91

slot
getting value of, 17
setting value of, 17

slot, link, see link slot
sole-trigger-instance-of, 65
space instance

creating, 20
deleting, 31
finding by path, 21
hierarchy, creating, 29
is a unit instance, 29

GBBopen 1.5 Tutorial
Index 105



standard-space-instance, 29
start-control-shell, 48, 50–52, 57, 65, 68
Subversion client, 4

TortoiseCVS, 4
TortoiseSVN, 4

unit class
applying a function to all instances of, 26
defining, 15

unit instance
adding to a space instance, 21
applying a function to all instances of a class, 26
creating, 16
deleting, 27
displaying a description of, 16
finding

by name, 17
on a space instance, 22

removing from a space instance, 23
slot

getting value of, 17
setting value of, 17

updating GBBopen, 4

values, 4, 6

x-of slot reader method, 17

106
GBBopen 1.5 Tutorial

Index


	Acknowledgments
	Introduction
	Starting GBBopen
	Creating a Unit Instance
	Creating a Space Instance
	Deleting Instances
	Enhancing Your Development Environment
	Working Within a File
	Adding Dimensions
	Using a Control Shell
	Application Startup and Event Functions
	Add Another KS
	Making Connections
	Creating a GBBopen Application
	Multiple Walkers
	A Dimensional Detour
	More to come…
	The Completed Application
	Index

